JSNotes5 – the DOM
In JavaScript there are three kinds of objects

1. Native objects such as Math and Date.
You have already met some of the Math objects methods, e.g. Math.round() and Math.random().

2. Host objects which are provided by the browser. These are introduced below in the DOM or Document Object Model.

3. Custom or user-defined objects which are described below.
Custom objects and prototype
In JavaScript there are lots of objects (e.g. Arrays, Strings, etc.) Each of these is a specialization of the general Object.

Now, JavaScript is prototype-based object oriented. See http://www.w3schools.com/jsref/jsref_prototype_date.asp and

http://www.prairienet.org/~sjmccaug/dom.htm
With any object (including the native object such as Array or String) you may add additional properties and methods. You do this through the object’s constructor or prototype.
As an example, if my strings are credit card numbers I might want all my strings to have a verification code. I can add this property to all strings as follows:

String.prototype.veri=’ ‘

Notice that I must capitalize String (the name of object).

For example, if all my strings are to be centered on a space 72 characters wide, I might want a method which calculates the number of spaces to the left of the first letter. I can do this as follows:
 function leftSpace()
 {spBlank=72-this.length;
 return Math.round(spBlank/2)
 }

 String.prototype.spacesToLeave=leftSpace;

 Notice that we have defined a function and then made it a method for the String object.

We may also attach properties and methods to objects we have defined ourselves. Let us look at the three CustomObject pages. Please note that the way you define an object is by defining its constructor (a function).

 MyObject(para1, param2, param3)
 {this.property1=param1;

 this.property2=param2;

 this.property3=param3;

 }

I can then instantiate such an object with myO= new MyObj(5,3,2)
I can use prototype to add a method – or I can include it in the constructor.
 MyObject(para1, param2, param3)
 {this.property1=param1;

 this.property2=param2;

 this.property3=param3;

 this.myFunc=nameOfPreviouslyDefinedFunction;

 }
this is a reserved word which refers to the object you are in.

DOM= Document Object Model

The document is a tree of nodes:

· Parent and child nodes

· Root node is window

· It has child nodes:

· document

· history

· location
· navigator (browser info)

· http://w3schools.com/htmldom/dom_reference.asp has an easy reference
http://www.w3.org/TR/REC-DOM-Level-1/level-one-html.html#ID-882764350 has a full description of DOM level 1
http://www.w3.org/TR/DOM-Level-2-HTML/html.html has level 2
http://www.w3.org/TR/DOM-Level-2-Events/events.html has level2 events
· document has child html

· html has children

· head

· body

· head and body have other children – e.g. <h2>, <div>, <p> etc.

· these elements may have more children (e.g. a <p> within a <div> or a <tr> within a <table>

· typically they also have a child called text – the actual words in a header or paragraph;
· they often also have attribute nodes – e.g.

has 4 attribute nodes – one for each of the attributes src, height, width, and alt.
Home
the element node for <a> has an attribute node containing href=’index.html’ and a text node containing Home.

Why would you care about the DOM?

· Using functions such as getChildNode and appendChildNode you can move around the document and even change it after the page has been loaded (Ajax).
· The browser creates certain arrays for you and that can be useful. For example, document.images[] is an array which holds the information about all the images.

· You may access a particular image in two several ways.

· document.images[0] is the first image on your page, etc.

· if you named your image

you may access it as document.images[‘logo’]
This is much better than counting down to the 5th image (and then changing the code when you add another image between the 3rd and 4th ones.)

· if you gave you image an id

you may access it as myImg=document.getElementByID(‘myLogo’)

· I try hard to always give my elements (images, forms, divs, etc.) both a name and an id and to make them the same. This is for compatability with older browsers.

· For any object node with a child node which is an attribute you have getAttribute() and setAttribute() methods.

For example, if I had retrieved myImg as above I could say
 origSrc=myImg.getAttribute(‘src’) or
 myImg.setAttribute(‘src’, ‘newLogo.gif’)

Using either the code above or the document.images approach you can code rollovers, make fields in a form which don’t validate have red titles,etc.

· In addition to document.getElementById() there is also getElementsByTagName() which returns an array of all elements with a given tag. For example paras=getElementsByTagName(‘p’) returns all paragraphs.
So as you can see, an HTML or XHTML document comes with many objects, structured as a tree, and with many functions for manipulating them (more soon.)

Mozilla http://developer.mozilla.org/En/Gecko_DOM_Reference:Introduction#What_is_the_DOM.3F puts it as follows : “The Document Object Model (DOM) is a programming interface for HTML and XML documents. It provides a structured representation of the document and it defines a way that the structure can be accessed from programs so that they can change the document structure, style and content. The DOM provides a representation of the document as a structured group of nodes and objects that have properties and methods. Essentially, it connects web pages to scripts or programming languages.”
