Cascading Style Sheets (CSS) v17 1/23/2021

By Margaret S. Menzin © 2006 - 2016
May be used for non-commercial purposes with credit.
Table of Contents
0.	What do you want your site to look like?	1
1.	Basics	3
A.Why use style sheets?	3
B.Where do style sheets go, and how do you access them?	4
C. In-line styling	6
D. What is the C in CSS?	7
E. Specifying Different Styles for Different Media	7
F. Comments	9
2. SELECTORS	9
A. Rules, selectors, properties, and values	9
B. Element selectors:	10
C. Grouping	11
D. Chains or Nesting	11
E.Naming with id	12
F.Classes	13
G.Summary	14
3. Specifying color -see also my note on Color in this folder	14
A. Background color	14
B. Font color	15
4. Size and placement on the page	15
A. Positions	15
B. The Box Model and Margins etc. - also see the discussion under Tables	17
C. Size Applied	18
D. Alignment and Text alignment	18
5. Other font characteristics	19
6. Tables	20
A. General information about table styling	20
B.Borders	23
C.Margin	23
D.Padding	24
7. Lists	24
8. Classes and id; div and span; attribute selectors	24
A. Review of classes and id selectors	24
B. Attribute selectors (new, advanced)	26
9. Inheritance and the Cascade	27
A. Inheritance	27
B. The Cascade	28
Cascading order To find the value for an element/property combination, user agents must apply the following sorting order:	29
10. Addendum on the Box Model and Other Important Miscellany	29
A. SELECTORS	29
B. VISIBILITY	30
C.SIZE:	30
D.POSITION:	31
E.LAYOUT REMINDERS:	31
11. Pseudo-classes, Floats, CSS3 and more advanced features	31
12. References	32

0. [bookmark: _Toc331148173]What do you want your site to look like?
This course is not a course on graphic design, and some of you will take some advanced courses on that topic.
None-the-less there are some very basic ideas that you need to know, and you should be able to develop an eye for what is good design.

The purpose of using Cascading Style Sheets is to make your site look the way you want it to.

Here are a few general principles about web site design:

· A web site is designed for a certain audience; the ‘look and feel’ should be appropriate for that audience
You wouldn’t put pink hearts and flowers on an NFL site, or controversial images on a Disney site.

The look and feel of a site is part of the branding of whomever the site belongs to – think about what image you want to project.

· A web site is designed for a purpose; it should help the users meet their goal.
The goal may be to sell something (amazon.com), to make students interested in a college (simmons.edu), to help users make airline reservations (aa.com), or to help doctors and nurses manage patient information in an EHR (electronic health record.)

You should understand what steps the user needs to make to gather information and complete his task – and you should make it easy for the user to do these things.

We will talk about this a lot in the course. This topic is called usability.

· A web site should have a consistent look and feel, and clear, consistent navigation.
This is part of making your site easy for the user to use, but it also provides clues as to when the user has linked away from your site.

· Some of the principles of print design do not apply to web page design.
People read web pages in an E or F formation. They skim!

They don’t stop to appreciate the elegance of your layout – they are looking for information and to accomplish a task.

As important as white space is in print layout, its purpose on a site is only to
help the user find what he is looking for and accomplish his task.

· That said, there is no excuse for a web page to be cluttered or ugly.
So I am providing some introductory reading and some references for you.

· Some of the good writing principles you have learned do not apply to web design.
Your reader is not looking for a well-developed argument. Your reader will only skim over long paragraphs.

Keep your paragraphs short – even if that means breaking what should be one paragraph into several.

· All grammar and spelling on a site should be correct.
There are plenty of tools for checking spelling and grammar. Use them!

· A web site should be accessible to all users – including those who are visually handicapped.
I will provide information on this as we go along.

Meanwhile, please remember that about 1 in 25 men is red-green color blind. There are tools to test how a page looks to these people.

In addition, there are a large number of people who use aural readers.

· Where should you start?
The best introduction is Robin Williams book The Non-Designer’s Desgin Book.
You were given a link to it in the ACM O'Reilly site in Chapter 0. You should have read all of it (it’s very short) by now.

There are many links on page and site design on http://web.simmons.edu/~menzin/WebCentricResources.html
and many helpful tools. Two of my favorite sites are http://meyerweb.com/ (especially the CSS and Toolbox areas) and http://www.alistapart.com/
The WebCentricResources page also has tweeters and bloggers whom you may want to follow.

Note: If you have not already gotten a free account at http://css.maxdesign.com.au/#downloadable and you want your own copy of Russ Weakley’s excellent slides on CSS then you should do so now. I have also placed some of the files in the Chapter 1 folder in Moodle.

1. [bookmark: _Toc331148174]Basics
A. [bookmark: _Toc331148175]Why use style sheets?	
CSS stands for Cascading Style Sheets, which allow you to set and use a consistent style (colors, font, margins, etc.) in your web pages.

The motivation for using CSS is to separate the structure and presentation of your page.

The structure is given in your HTML or XHTML page; ‘structure’ includes such items as headings, paragraphs, anchors, tables of data, etc.

The presentation is given in your CSS; ‘presentation’ includes such items as the choice of fonts, colors, margins, etc.

While CSS may have been a nice add-on at one point, it is really an important tool if you have pages which will be rendered on hand-held devices, for optimizing pages for printing, and for aural readers. Today, CSS is vital.

In designing a style sheet you want to think about the kinds of things which appear on your pages – headings, sub-headings, text, navigation, etc.

These are the kinds of things for which you will define the style.

For example, you might want to make all headings be in green bold Arial.

You will also want to think about subsets of these – for example, what are all the paragraphs which you want to have appear in small print.

Again, CSS provides a way to do this.

There are a few major advantages to using style sheets:

· First of all, you can easily get and maintain a unified look to a large site.

· Second, you can easily change the appearance of an entire site.

· Third, you can specify alternate styles for different users and devices. The weather forecast for a handheld (e.g. smart phone) must be presented differently (less screen space) than the same forecast on a monitor.

W3C refers to this last as specifying the presentation for different media.
Examples of media are print, Braille (Braille readers), aural, handheld, screen (your computer screen) etc.
The w3c has a complete list of media types at
 http://www.w3.org/TR/REC-CSS2/media.html#media-types
and a discussion of the general issues at
 http://www.w3.org/TR/REC-CSS2/media.html

· Finally, CSS allow you to fine-tune the appearance of your site – control of positioning, layering, etc.

B. [bookmark: _Toc331148176]Where do style sheets go, and how do you access them?
There are two ways to specify a style sheet
· inside a web page (an embedded style sheet), or
· with a link to a separate file which contains the style sheet (an external style sheet).

 In either case the information (that there is a style sheet) is in the head section of the
 HTML.

<style type=”text/css”> </style> ….. The style tag (for embedded style <style> </style> sheets)

<link >				 …..	The link tag (for external style sheets)	

To use an embedded style sheet we use the <style type=”text/css”> tag:	
	<html>
	<head>
		<title>Demo of Style Sheet on the Page –or an Embedded Style
 Sheet</title>

		<style type=”text/css”>
			:
			:	this is where you put the style specifications
		</style>
	</head>
	<body>
	 :
	</body>
	</html>	
	
OR:

 <html>
	<head>
		<title>Demo of Style Sheet on the Page –or an Embedded Style
 Sheet</title>
 <style>
		@media all {
			:
			:	this is where you put the style specifications for
 : all, or other media type
		 }
 </style>
	</head>
	<body> …. :
	</body>
	</html>	
Paragraph E of this section shows you how to do use different @rules for different media.

If you are going to use external style sheet(s) then you will link to it in the head:
Notice that the link tag is self-closing.

 	<html>
	<head>
		<title>Demo of Style Sheet in a File –or Using an External Style
 Sheet</title>
		<link rel=”stylesheet” href=”fileWithStyleSheet.css” type="text/css" />
	</head>
	<body>
	 :
	</body>
	</html>	
OR

	<html>
	<head>
		<title>Demo of Style Sheet in a File –or Using an External Style
 Sheet</title>
 <style type=’text/css’>
		@import url (”fileWithStyleSheet.css”); /*no space after the (*/
 </style>
	</head>
	<body>
	 :
	</body>
	</html>

and in the file fileWithStyleSheet.css you will place the style specifications (without the <style> </style> tags.)

NOTE: For both embeded and external style sheets, the type='text/css' is unnecessary as that is the only type defined for style sheets (& the default).
Once you say <style> for an embedded style sheet of say
<link rel='stylesheet' > the browswer knows there will be a CSS stylesheet.
While I have included the type attribute in these notes, it is fine to omit it.

Paragraph E of this section shows you how to do use different @import rules for different media.

 External style sheets are the more common than embedded ones, because with external style sheets many different web pages can all reference the same style sheet, and a site can have a unified appearance.

Please notice also that with the style sheet in a separate file you can change the entire appearance of a web site (e.g. font, background color, etc.) by changing that one file.
For a large site this can be an enormous time saver.

A particularly dramatic example of this may be found at http://www.csszengarden.com/
(Warning: These CSS designs, all for the same page, were made by professional graphic artists. You should not expect to make CSS designs of this complexity or quality.)

On the other hand, as wonderful as CSS is, saved pages with an external css may not link (off-line) to the same style sheet, which is an important disadvantage of using external style sheets.

For example www.htmlhelp.com has a nifty tool called Link Valet which checks all links on a page and reports its results using a table that is color-coded (using a css) to make it easy for you to scan the results. When you save the results on your own hard-drive the coloring is lost.
(Of course, looking at the code for the page gives you the link for the style-sheet,
which you can then access and save, but some sites don’t allow you this privilege.)

Our emphasis will be on external style sheets (although you should have no problem adapting this to in-line and internal styling.)
 So let’s look again at the link tag:

	 <link rel=”stylesheet” href=”fileWithStyleSheet.css” type= “text/css”>

The href is a URL reference, just like any other href.

For a large site, you may elect to keep all your style sheets in a separate directory (as you do for images). You may even link to the w3c.org’s set of model style sheets at

 http://www.w3.org/StyleSheets/Core/

[bookmark: _Toc331148177]C. In-line styling
One may also over-ride a style sheet by putting style settings inside an HTML element -which you have already almost done This is called in-line styling.

Examples:
 <p style=”color: red; font-family: Arial; font-style: bold”>A screaming paragraph in
 red bold face! </p>
	 <td style=”text-align:right”>$17.36</td>
	

Important Trivia: Note that everything after style = is inside quotes.

Once you learn how to write style sheets, it will be easy to write in-line styling, so don’t worry about the details now.

[bookmark: _Toc331148178]D. What is the C in CSS?
The C in CSS stands for Cascading. Because there may be multiple style sheets, style inside a page, as well as user styling requirements and in-line styling, there must be a set of rules to determine which styling dominates when there is a conflict. This is the called the Cascade.

These cascading rules calculate a weight and a ‘specificity’ for each style declaration.

Then the rule with the higher weight determines the styling.

Briefly, in CSS2 and CSS3:
· the authors’ rules always take precedence over users’ rules (except that is reversed for !important rules),
· in-line styling takes precedence over internal style-sheets,
· internal stlye sheets take precedence over external style sheets and
· in a conflict between two styles in the same document the more complicated rule wins.
· If two rules have the same weight, then the more recent one wins.

Section 9 of these notes has more details.

Some of this can get very hairy, and if you are planning to use complex cascades then you should look at the references at the end of these notes and in the course bookmarks.

[bookmark: _Toc331148179]E. Specifying Different Styles for Different Media
The w3c has defined about a dozen types of media – screen, print, handheld, braille, tty, tv, projection, aural, embossed and all.

If you are using embedded style sheets, you would code:
<style>
 @media screen, print
	{rules for screen and print go here}
 @media handheld
 {rules for smart phones and the like go here}
 :
</style>
Remember that the last rule read has precedence for equal weights, so you might begin with the @media all rules, and then over-ride them for specific media.

If you are using external style sheets, you may either specify the media inside the link tag with the media attribute. http://webdesign.about.com/od/beginningcss/f/css_import_link.htm explains the why one would choose link (more common) or choose @import rules

Example 1:
	<link rel=”stylesheet” href=”fileWithStyleSheet.css” type="text/css" media=’print, screen’ />
 	<link rel=”stylesheet” href=”fileWithStyleSheetAural.css” type="text/css" media=’aural’ />

 Example 2:
 <style type = “text/css”>
 @import url(”href=”fileWithStyleSheet.css”) print, screen;
 @import url(”href=”fileWithStyleSheetAural.css”) aural;
	</style>
 	

Example 3:
	<link rel="stylesheet" type="text/css" media="print, handheld" href="foo.css">
	<link rel="stylesheet" type="text/css" media="screen" href="bar.css">

	
Example 4:
or directly after the link tag you may import different style sheets for different media:

< link rel="stylesheet" type="text/css" media="all" href=”allversion4.css” />
	@import url (“printversion4.css”) print;
	@import url (“handheldversion4.css”) handheld;

The @import rules will override the specifications in the href –specs which will then apply
to the other media.)
 More information may be found at http://www.w3.org/TR/CSS21/media.html
We will not be doing this in this course.

You should recognize the various ways to import stylesheets, but we will use the version
in Example 1, and most of the time we won’t need to use the media attribute (one style sheet fits all.)

In other words, most of the time we will use an external style sheet:

	<link rel=”stylesheet” href=”fileWithStyleSheet.css” type= “text/css”>

Note: In HTML5 the type attribute is optional, and is no longer needed.

Or we will put an internal style sheet in the head:

	<style type=”text/css”>
			:
			:	this is where you put the style specifications
		</style>

Again, external style sheets are more common and are generally preferred.
Sometimes I will use an internal stylesheet (a) to over-ride the site-wide external style sheet,
or (b) so that you can look at both the html and the css on one page (i.e. for pedagogical reasons.)

I will sometimes use an embedded style sheet so that you don't need to download the stylesheet separately.

[bookmark: _Toc331148180]F. Comments
/* encloses comments */

Of course, your CSS should be well commented and it is a good idea to use comments to set off the different parts of your style sheet:

/* ------- Body Styling ------*/

/* -------Paragraphs and Headers Styling -------*/

etc. Obviously you will want to organize your style sheets in a logical way.

Optional further reading if you wish more detail can be found at http://www.w3schools.com/css/default.asp or in the Chapter 1 Moodle folder – the Russ Weakley slides for CSS-Introduction and CSS- Definitions.

I have included his CSS3-Introduction, but CSS3 is now available in almost all browsers (check http://caniuse.com for specific issues). CSS3 added many features, including media queries, to CSS2 but all the CSS2 articles referenced here also work for CSS3.

Now, in Section 2, we finally get to the nitty-gritty about how style sheets work:

[bookmark: _Toc331148181]2. SELECTORS
[bookmark: _Toc331148182]A. Rules, selectors, properties, and values
Whether your style specifications are in a separate file or are enclosed by style tags, they will all follow the same format:

	selector { property:value;
	 property:value;}

The selector is the element being styled- e.g. body, paragraph, table, unordered list etc.
The property is the property of that element being specified (e.g. color or text size) , and the value is what value you want the property to have (e.g. red).

Important Trivia:
· Note that multiple property:value pairs are separated by semicolons.
· It is optional, but greatly preferred to have a semi-colon after the last property: value. I expect you to do so.

Example:
 body {
	background-color:aqua
 color: black;
	font-family:Arial, Times;}
 /* Note that the properties are alphabetized for finding easily! */

 h1 { font-family: Verdana;}

Here we have specified two different selectors – the body and h1.

· If we were to use an external file then everything in the bold type (and nothing else) would go into the external file;

· If you were going to embed a style sheet inside a web page, then that same material would go between the <style > and </style> tags.

· If we wanted to do the h1 example in-line (e.g. for only one heading) we would say:
<h1 style=”font-family:Verdana”>

 Notice the format:
 <element-name style=”property:value”>
	

· NOTE: For in-line styling there is no reason to use a selector. The styling applies to a particular tag (& usually its children).
 You simply write inside the opening tag:

 style=”property1:value1; property2:value2; ….. ;propertyn:valuen;”

Please notice that everything after the = is encloded in quotes (single or double) and that semi-colons separate the property:value pairs.

Examples:
 <td style=”text-align: right> right aligns data in the td cell
 <ul style=”list-style-type:none> this unordered list will have no bullets
 changes the font family until the tag.

Important Trivia:
· The names of font-families, classes and ids are case-sensitive in CSS.

· Although element names (e.g. h1, p, div) are not case-sensitive in CSS and HTML, since XHTML requires that all tags be lower case, it is simpler to just get into the right habits – write your tags in lower case and code as though CSS were case-sensitive!

We now turn to the selectors. As you are about to see there are many different types of selectors. We will look first at element selectors, then at classes and ids, and chains of selectors and, then, in Section 8, at attribute selectors.

[bookmark: _Toc331148183]B. Element selectors:
The most basic selector to use is an element selector – that is to select on one of HTML’s tags:

body { }
p { }

* (which refers to all)

div { }

h1, h2, h3, h4, h5, h6 { }

 Example:

 * {font-family:Arial} /*This makes the whole page(s) in Arial*/

 Multiple properties for the same element are enclosed in braces.

 Example:
 body
 {color: black;
 background-color: aqua;
 font-family:Arial;}

[bookmark: _Toc331148184]C. Grouping
 Multiple elements may be assigned the same properties as:

	h1, h2, h3 {color: red;}
	h4, h5, h6 {color: purple;}

 This will make the three largest headers red and the three smaller ones purple.

Important Trivia: Please note the commas separating all the selectors to which the styling inside the parentheses will apply.

[bookmark: _Toc331148185]D. Chains or Nesting
 If we view an HTML/XHTML page as a nested structure (so that an element contained inside another element is a descendent of the outer element (see the information about the document tree in section 6) then we may select only those blah-blahs which are descendents of foo-bars, etc. This is styled by selecting

 foo-bar blah-blah { }

 More on this material may be found in the Meyers book (Chapter 2) or in
 http://www.w3.org/TR/REC-CSS2/selector.html

 This is very useful. For example, if I want to style the <th> elements which are inside
 the <thead> but not those inside <tbody> I would code:
		thead th
 { whatever styling I want}

 This is also referred to as descendent selectors.
	
 Important Trivia:
 Note that there is NO comma between the elements when you want to use the
 document tree.

 Again:
 Use commas when you want to apply the style to a list of selectors.
 Use NO commas when you want to go down the document tree.

E. [bookmark: _Toc331148186]Naming with id
“id” stands for identifier.

Like all identifiers everywhere, the id must be unique to one element on a page.

 Giving an id to an element allows you to grab that element (a bit later in the course) and also allows you to select that element for styling.

 In essence, you have named your own selector.

 You will reference that element in your style sheet with #id_name.

 Example:
 On your html page:
 <div id=”Navigation”>
		//code for this part of page goes here
	 </div>

 In your style sheet:

	 #Navigation {color:purple; font-family:Arial}

 Important Trivia:
· Only one tag on a page may have a given id value. In other words, you may NOT have more than one div (nor one div and one p) with id=”Navigation”

· It is important to remember that a # in front of a word refers to something with that id.
Here is a way to remember that (until it becomes second nature): an id, such as an id number is unique, so you put the number sign or # in front.

· Notice that when the id is declared in the html page its name is inside quotes. This is because in XHTML all attribute values must be quoted.

F. [bookmark: _Toc331148187]Classes

In CSS anything which you can do with id may also be done with class, and class is more flexible because the class may be re-used on the page.

The id (and other selectors) will become more useful in XML, AJAX and jQuery.

We will look at this later, but the idea is simple. Each class may be used to define a style for an element (e.g. for a paragraph), and then at different places on your page you ask for the style specified by such-and-such a class. For example, in a contract you may have one class for the proverbial finePrint, and another for normalParagraph.

A class may be named inside an element tag (as in the h1 and p tags above), or inside a div tag (which, as you know from HTML/XTHML typically encloses a block of text) or inside a span tag (which encloses a small amount of text in-line.)

If, for example, you decide that some text should be in red, and that any red text should be in bold, then in your style sheet you might define the class redtext:

 	.redtext {color: red; font-weight: bold;}

and on your web page you could, in various places say:

 	<h1 class=”redtext”>What a day!</h1>
				:
 	<p class=”redtext”>Warning: This offer valid only for 5 days</p>

 Notice that the same class may be used in different element tags.

 It is also possible to assign multiple classes to the same element:

 <div class = “redtext legal”>

 In which case the styling from both the redtext class and the legal class will apply.

Classes (and ids) should be used judiciously. Assigning classes to everything under the sun is called classitis. Best practices for large CSS sets traditionally emphasize the use of descendent selectors, (as in section D above), although that is beginning to be questioned. See the Web Centric Reources page for more on best practices for CSS.

Class names, like id names and all other values of attributes are declared in the html page inside quotes.

AGAIN:
 In a style sheet we refer to a class with a period: .class_name
 We refer to an id with a #: #id_name

Reference: http://www.w3.org/TR/REC-CSS2/selector.html
 http://reference.sitepoint.com/css/selectorref (use menu at left)

[bookmark: _Toc331148188]G.Summary
· Every rule has the format selector {property:value;}
Ex. h1 {color: red; }

· Multiple sets of property:value may be listed inside the braces, separated by semi-colons.
Ex. h1 {color:red; font-family:Arial;}

· A set of rules may be applied to multiple selectors separated by commas.
Ex. h1, h2 {color:red; font-family:Arial;}

· An id may be used as a selector with a # in front
Ex. #fineprint {color: gray; font-size:50%; }
 Somewhere in the html page there will be <p id=’fineprint’>…</p>

· A class may be used as a selector with a . (period) in front
Ex: .vivid {color:red; font-weight:bold; font-size:150%;}
 Multiple places in the html page may have <h1 class=’vivid’> etc.

· Selectors may be chained or nested by listing them with no commas; you may do this with element selectors, class selectors, and combinations of both.
Ex. li .vivid {color:red; font-weight:bold; font-size 100%;}
 This makes list items of the vivid class red and bold, but keeps their size
 the same as the other elements in the list.
Ex. ul .noBullet {list-style-type:none;} makes all unordered list of the noBullet
 class have no bullets.

· Style sheets should be organized and commented.

[bookmark: _Toc331148189]3. Specifying color -see also my note on Color in this folder
[bookmark: _Toc331148190] A. Background color
Background-color is set in the body tag and applies to the whole page. You may either use one of the named colors (red, teal, etc) or use the 6-character hex description, as in your HTML/XHTML notes:

 body {background-color:#FFCCFF}

You may also specify the red, green, blue values as numbers between 0 and 255

 body {background-color:rgb(255,0,0)}

 is pure red, or you may use CSS3’s HSL.
	
As you learned in the HTML part of this course, you should stick to browser- safe colors.

Please note that HTML pages use bgcolor, but style-sheets use background-color.

More information about colors may be found at http://www.w3.org/TR/REC-CSS2/syndata.html#value-def-color

[bookmark: _Toc331148191] B. Font color

The font color is specified (for headings h1, h2, etc. and paragraphs p) with the key word color, and using the same way to designate your color choice as you used for backgrounds. For example,

	 h1 {color:red}

 makes all the largest headings red.

[bookmark: _Toc331148192]4. Size and placement on the page

NOTE: Size may be given in pt (points, or 1/72 of an inch), in (inches), cm (centimeters), em (the size of the letter m in the current font) or px (pixels). It may also be specified with % (percents.)

 Because screens now come in so many sizes, I use px, em, or %.

[bookmark: _Toc331148193] A. Positions
 i. Elements
 Position may be static (usual – just follow the normal flow), absolute, or
 relative.

 In absolute positioning you specify a corner of the element (heading,
 paragraph, image, etc.). For example

	h1 {
		position:absolute;
		left: 25px;}
	h2 {
		position:absolute;
		left: 50px;}

 will indent all h1 headings by 25 pixels and all h2 headings by 50 pixels.

 For absolute positioning you may specify left, right, top, bottom.

 In relative positioning you specify how much extra you want for the image
 placement. For example,
 	h1 {
		 position:relative;
		 left: 25px;}

specifies to move the h1 headings 25 pixels further to the left than what would otherwise have been done. (See Box Model below.)

You may also use vertical-align to line up the top, middle or bottom of an element (e.g. to have all your images rest on the same imaginary line, or to have text and image centered vertically, etc.)

 Refer to http://www.w3schools.com/cssref/pr_pos_vertical-align.asp for details.

NOTE: There is no space between the size’s value and its units- i.e. ‘50px’, NOT ‘50 px’

		
ii. Background images
Background images may be placed in a spot on the page (see positioning above) or repeated, or you may settle for a solid background color (my usual preference.)

 iii. Layers or the z-index
 When you specify the z-index you are specifying what layer goes on top of what.
 If you have positioned two elements on the page in such a way that they
 overlap, then the one with the higher z-index will be on top.
 Example:
 #bottomLayer {position: absolute;
 left: 25px;
 top:200px;	
 z-index:1;}
 #topLayer {position: absolute;
 left: 25px;
 top:200px;	
 z-index:40;}

[bookmark: _Toc331148194] B. The Box Model and Margins etc. - also see the discussion under Tables
Each element is contained in a box.

Just inside the edges of the box is a margin, then (moving inward) a border,
then padding and then the content.

My mneumonic for remembering the box model Margin Border Padding Content
 is Many Bright People Code. You may invent a better one.

Margins and padding may be set for each side (e.g. margin-left: 10px) or all at once (margin: 10px).
The sides are top, right, bottom, and left . (Start at the top and go around clockwise.)

As usual, the size of the margins or padding maybe specified as auto or sized in em, px or % units (see immediately below).

A complicated example of how these interact may be found in Section 8.2 of http://www.w3.org/TR/REC-CSS2/box.html#box-model

Important Notes:
· The content element’s background (color or tiling) also applies to the padding.

· The parent element’s background applies to the margin b/c the margin is transparent.

· Margins can have a negative value (starting in CSS2) ; padding can’t.
A negative margin makes the content stick out of the place where it should be. While this can make for interesting effects, it should be used very cautiously as it can also make the content stick out past the browser window.

· When multiple vertical margins meet they can collapse (vertically only); borders and padding don’t collapse.

[bookmark: _Toc331148195] C. Size Applied
See section 5d font-size for other examples of how to specify the size of an element.

For an image you may specify height and width. (See classes below to learn how to make different images different sizes.) As with fonts, height and width may be specified in pixels, inches, centimeters, em’s etc.

	img {height:100px; width:100px;}

does the obvious thing. Warning: This line of code (without any classes) will make ALL your images the same size.
This might be terrific for a site of thumbnails, but probably not in general. So you might choose to add a class=’thumb’ to some images and then style img and img .thumb differently:

 img {height:400px; width:400px; border:1px;}
 img.thumb {height:100px; width:100px; border:1px;}

Note: ‘width’ applies to the content element (e.g. image); the total horizontal space (‘the visible box width’) is the sum of width, left and right margins, borders and padding. ‘height’ works the same way, except that vertically adjacent margins are collapsed to the largest vertical margin value (i.e. the vertical margins are not added together).

[bookmark: _Toc331148196] D. Alignment and Text alignment
 To indent the start of each paragraph by 10 pixels, put in your style sheet:

	 p {text-indent:10}

 To have a class wow which centers all items and prints them in bold red use

 .wow {text-align: center; color: red; font-weight:bold;}

		
 Vertical-align: sub and vertical-align: super may be used to get
 subscripts and superscripts (for instance in classes sb and sp which you define).
	
 In the style sheet
 .sp {vertical-align: super; font-size: 75%;}	/*small superscripts*/
	 .sb {vertical-align: sub; font-size: 75%;}	/*small sub scripts*/

To print x02 in your web page you would have

	<p>x02</p>

You may also choose (in the .sp and .sb definitions) to make subscripts and superscripts a smaller size than the rest of the text. (See section 5d on font-size on specifying relative sizes.)

Because superscripts and subscripts occur so often in science, the <sub> and <sup> tags are perfectly acceptable, and often clearer than using CSS to style equations.

If you use the <sub> and <sup> tags your text will automatically become smaller; if you use vertical-align the size of the text does not change and you will need to style it with font size if you wish it to be smaller.

[bookmark: _Toc331148197]5. Other font characteristics
Reference: http://www.w3.org/TR/REC-CSS2/fonts.html#font-specification
 A. font-family
 In HTML and XHTML, you specify a list of font families to choose from (first choice
 first). A family of fonts actually consists of several fonts – e.g. Arial, italic Arial,
 bold Arial, bold italic Arial, etc.

 You may also specify a “generic” type of font- e.g.serif, sans-serif, cursive

 Example: h1 {font-family:arial, courier, sans-serif ;}	

 Some families have multiple names – e.g. Times New Roman, TimesNR, etc.
 You should list them all.

 If the name of a font family has a space in it then you must enclose it in single or
 double quotes.
 For in-line styling, use the quotes which are different from those used after style=.

 B. font-style
 The choices are
	normal, italic, oblique
 The oblique is slanted, and the italic is an even more slanted, cursive version.

 C. font-weight
 The choices are normal, bold, bolder, lighter, 100, 200 …900
 Normal is usually equivalent to 400 or 500.
	
 D. font-size
 The size may be given as an absolute-size, a relative-size, or as a percentage of the size of the parent element.

 The absolute choices for font-size are xx-small, x-small, small, medium, large, xx-large, smaller, and larger

 To make subscripts and superscripts smaller one could declare the classes:
 	.sp {vertical-align: super; font-size: smaller}	/*superscripts*/
	.sb {vertical-align: sub; font-size: smaller }	/*sub scripts*/

 The w3c suggests a scaling factor of 1.2 to 1 between adjacent elements.
 For example, if your text is 10 points, then the sub-heading is 12 points and
 the main heading is 14.4 points.
 The default size font in all browsers is 16px (which is equivalent to 1em.)

 RECALL:
 Absolute-size
may be given in pt (points), in (inches), cm (centimeters), or px (pixels).

 Relative-size and percentages
 Relative size may be specified as larger or smaller, or using em or % (percent).

 An em is the size of one letter/character, so that 1.5em is the same as 150%.
 Please note that there is no space before the ”em” or the “%”.

 .sp{ vertical-align: super; font-size: 80%}

 There are always some subtleties. For example, when you blow up a font you may get “jaggies”. Please review http://www.walthowe.com/pubweb/gg3.html You can also learn more about this at http://en.wikipedia.org/wiki/Dither#Digital_photography_and_image_processing

[bookmark: _Toc331148198]6. Tables
[bookmark: _Toc331148199] A. General information about table styling
 In CSS we use the notion of parent and child (ancestor and descendent for more than one level) elements which you also saw when we considered the DOM.

 For example, a <table> is a parent of a <tr>. The descendents may inherit from their parents (unless you over-ride that.).

Think of an object definition where a Student object may contain a Personal_info object and a Transcript object; the Transcript object contains several Semester objects, which in turn contain several Course objects. The Student is the parent of Personal_info and Transcript; Transcript is the parent of Semester; Semester is the parent of Course. This is also how XML views elements.

If we wished, we could draw this as a tree. We would have Student as the root, with 2 branches coming off for Personal_info and Transcript; Transcript would have a branch for Semester and Semester would have a branch for Course.

				
				Student
 / \
 / \
 / \
 Personal_info		Transcript
 |
 |
				 	Semester
 |
		 |
					Course												

The document tree is a tree of elements on your page (table, tr, td, h1, etc.) which is constructed with the descendent elements hanging from the parent elements.
The same principle applies to elements in an HTML page.

In CSS a child/descendent element is one that is inside another. For example, in a table, since a <tr>..</tr> is wholly inside the <table>…</table>, the tr element is a descendent of the table element. Likewise, the td element is a descendent of the tr AND the table elements.

Similarly, if your page has a <div>…</div> then any element inside that div is a descendent of the div.

A descendent element inherits most of the properties (e.g. font characteristics) of its parent, unless otherwise specified.

 Please review the “box model” above and read sections 8.1 and 8.2 of
 http://www.w3.org/TR/REC-CSS2/box.html Browse the rest of this reference on the
 box model..
 The material below covers some of the most important ideas. For fine-tuning refer
 either to w3.org or Meyers book.

 Recall that
· each element is contained in a box;
· just inside the edges of the box is a margin,
· then (moving inward) a border,
· then padding and
· then the content;

			
The margin			The border

				
				The padding
		The padding

 The content

· margins and padding may be set for each side (e.g. margin-left: 10px) or all at once (margin: 10px). The sides are top, bottom, left and right;
· margins maybe be specified as auto or sized in em, px or % units.
· Margins are set at the table level.
· Borders may be set for a table or at the tr or td/th level.
· Padding is set at the td/th level - or presumably at the tr level.
· Cells have padding, but not margins. Tables have margins but not padding.
· Cell padding gives you the space which separates the words or images inside the cell from the border of the cell. You need some!
Notice in the above bullet points that what you can set works down towards the content as you work into that table .

	Level
	What you can set

	table
	Margins, Borders.

 When the border of a table is specified, it
 applies to the whole table, not the cells.

	tr (table row)
	 Borders, Padding

	th, td (cells)
	 Borders, Padding

Consult either of the books or URLs in the reference section for more complicated applications. They may also be set for lists (see w3.org reference above.) The URLs also have lists of templates you can use (e.g. 2 column and 3 column layouts)
B. [bookmark: _Toc331148200]Borders
You may set border-style, border-color, border-width or you may set these for each side of the border separately (border-top-width, border-right-width, border-top-color etc. if you want bizarre borders).

Border-width is set the same way all sizes are (px, in, etc.)
Border-color is set the same way all colors are (red, #FF0000 or rgb(255,0,0) are all pure red.)
Border-style may be solid, double, inset, outset, groove, ridge, none, or in more recent browsers, dotted, or dashed.
Example:
	Table {
		Border-style: solid;
	 Border-width: 5px;
		Border-color: #0000cc}

gives a thin blue border.

 NOTES:
 1. The default border-style is none, so you won’t get any border, no
 matter what you say about color, width, etc. unless you specify a
 border-style.
 2. The border specified with the table selector gives a border around the whole
 table, not the lines between cells.
 The border specified in the td selector is the border between cells.
 3. An empty cell will not have a background color. To get a color in an empty cell,
 put a
 or in it.

See ExternalStyleWithTablesv1 .html to see.

 The docx name A_fairy_tale (in this folder) discusses the use of tables for layout.
C. [bookmark: _Toc331148201]Margin
 Margins are set as they are for other elements – all at once or for each side.
 The size of the margins is given in cm, in, px or em units. See 4B.

[bookmark: _Toc331148202] D. Padding
 You may have the same padding around all table elements

	td, th { padding: 10px;}

 Or you may have different padding at different edges
	
	td, th {
 padding-left: 25px;
		 padding-right: 15px;}

 You may also set padding-top and padding-bottom. See the w3.org reference
 above.

 Important Note: (per http://www.w3schools.com/css/css_padding.asp or https://developer.mozilla.org/en-US/docs/Web/CSS/padding) Padding may specify 1-4 values. The 1, 2, and 4 are more obvious - but look carefully at the 3.

The padding shorthand property sets all the padding properties in one
declaration. This property can have from one to four values.

Examples:
 padding:10px 5px 15px 20px; /* 4 values given */
 top padding is 10px
 right padding is 5px
 bottom padding is 15px
 left padding is 20px

 padding:10px 5px 15px; /* 3 values given */
 top padding is 10px
 right and left padding are 5px
 bottom padding is 15px

 padding:10px 5px; /* 2 values given */
 top and bottom padding are 10px
 right and left padding are 5px

 padding:10px; /* 1 value given */
 all four paddings are 10px

Note: Negative values are not allowed.

E. Templates
If you want to style your own tables, use these notes or one of the tutorials in the course notes or the one at https://www.tutorialrepublic.com/css-tutorial/css-tables.php or at https://www.w3schools.com/Css/css_table.asp

The w3schools has created basic templates. A tutorial is at https://www.tutorialspoint.com/w3css/w3css_tables.htm and at https://www.w3schools.com/Css/css_table.asp

If you want something fancier:
There are 40 nice templates at https://uicookies.com/css-table-templates/ many of which are responsive.
Another site with free templates is at freehtmldesigns.com https://freehtmldesigns.com/css-tables/
Note: I would change the colors in many of these so that the tables are easier to read.

[bookmark: _Toc331148203]7. Lists
 Margins (indentation) are discussed under tables (previous section).

 You may use an image instead of a bullet in an unordered list.

ul {list-style-image: url("/images/myBullet.gif") }

 or use list-style-type to specify the value none, disc, circle, or square.

 You may also specify the kind on numbering you want for ordered lists with the
 list- style-type attribute.

 The most common values are decimal, upper-roman, lower-roman (for roman
 numerals), lower-alpha, upper-alpha (for letters.)
 See http://www.w3schools.com/css/css_list.asp for other choices.

 Finally, list-style-position may be specified as inside or outside.
 If you wish, you may look at an advanced overview of the whole system:
 http://www.w3.org/TR/REC-CSS2/visuren.html#block-level

[bookmark: _Toc331148204]8. Classes and id; div and span; attribute selectors
[bookmark: _Toc331148205]A. Review of classes and id selectors
 Sometimes you don’t want all your h1’s to be the same size and color, or you don’t want all your paragraphs to look alike, etc. The way to handle this is thru classes.

 In your style sheet you define a class and how it is styled.

 In you page you reference an element as being styled according to some particular class.

 For example, you might have a class named legalWarning, and then some paragraphs might be styled according to legalWarning. You may have another class called normal, and a class called salesPitch, and various other paragraphs might be styled according to their specifications.

Here is the syntax for doing it:

In the web page you name the class, putting the name in quotes
	:
<p class=”salesPitch”> We guarantee it….You can land the job of your dreams </p>

<p class=”normal”> and never need to write a resume or scan the job listings again.</p>

<p class=”legalWarning”>Only persons born in the year 2011 and with naturally blue hair are eligible for this guarantee.</p>

<p class =”salesPitch>And remember...we guarantee it!</p>

In the style sheet you specify the styling, putting a period in front of the name of the class:

	.salesPitch {font-color:red}
	.normal {font-color:black}
	.legalWarning{font-color:yellow}

Please notice, that the way the styling above was defined it could also be applied to headings, td elements, divs, etc.

You may also style using a nested approach. For example, suppose in your salesPitch class, above, you want all text to be red, but
you want the h1’s to be even larger than your usual h1’s. Your style sheet might say

 .salesPitch h1 {font-size:36pt}

This styling applies only to those h1’s which are inside a section declared as being styled with the salesPitch class.

Please note that the style sheet lists the class, element, etc from the outside in.

Classes may also be combined, so that if you define classes redtext and salesPitch in your stylesheet then in your web page you might have

	<p class= “redtext salesPitch”>…..</p>

The style sheet must also have a class called redtext.salesPitch (combining the two other classes), which may add further specifications. XML and many browsers do not support combining classes, but some languages derived from XML (e.g. MathML) do support this.

id works the same as class, except that in the tag on your web page you say

 < elementName id=”securityAlert”>

and on the style sheet you specify it as:

	#securityAlert {font-size:36pt}

There is one important limitation: You may have 36pt}

There is one important limitation: You may have only one id per web page.
Both classes and id may be used with either div or span. Div and span have different uses.
Basically, div is a block-level tag and span is an in-line level tag.
Block-level elements are designed for large blocks of text, one below the next, and they start and end with new lines.
Examples of block-level elements are <div>, <table>,
, and <h1>, <h2> etc.
Span is an in-line element. In-line elements are designed to go inside the flow of text
(as when you keep typing in a word processor.)
Examples of in-line elements are , <a>, and <input>

[bookmark: _Toc331148206] B. Attribute selectors (new, advanced)
 It is possible to select a certain style based on the appearance of an attribute or based on the attribute appearing with a certain value.

In HTML5 (or XHTML) you might use this so that whenever color was specified in an h3 heading the font-style was italic. You style sheet would include

	h3[color] {font-style: italic;}	

or you might want all the right-aligned text (the numerical values) in a table to be in the Courier font:

 td[text-align=’right’] {font:family:Courier;}

Basing the style on the appearance of an attribute is more useful in XML where a particular set of documents may define its own set of attributes.

The next part will make more sense if you use XML. In XML you may build your own tags. For example, if a library (a user defined tag) has a frequency attribute in the item_title of its elements (for example, frequency might apply only to periodicals and not to books), and you wanted the frequency to be blue, then in the style sheet you would put

	item_title[frequency] {color:blue;}

and in the page you would get all titles of periodicals printed in blue.

So you might have
	
 <item_title frequency=”weekly”>TV Guide</item_title>
	 <item_title>Pride and Prejudice<item_title>

and the first item would be displayed in blue and the second wouldn’t.

If you wanted weekly periodicals in blue and monthlies in green, then in your style sheet you would put:

	item_title[frequency=”weekly”] {color:blue;}
	item_title[frequency=”monthly”] {color:green;}

More advanced applications and underlying logic are described in http://www.w3.org/TR/html401/struct/global.html#class-id-example

Examples in http://www.w3.org/TR/html401/struct/global.html#edef-DIV demonstrates how span etc. may be used to handle multiple languages (in section 7.5.2:) and also how div and span differ(sections 7.5.3 and 7.5.4).

Further information about specifying the language may be found in http://www.w3.org/TR/html401/struct/dirlang.html#language-info.

It is possible to change an in-line element to a box and vice versa by using the display property, but this is not recommended at this point. See http://www.mykiss.de/index.htm for more information.

[bookmark: _Toc331148207]9. Inheritance and the Cascade
[bookmark: _Toc331148208]A. Inheritance
The best simple explanation of inheritance is at http://css.maxdesign.com.au/downloads/css-inheritance/
You should read it before proceeding! It is also in the Chapter 1 Moodle folder.

Recall that every element in an HTML document sits somewhere on the document tree. As such (other than the root of the tree) it has a parent and perhaps further ancestors.

Some properties (but not all) of the parent and ancestors are inherited, others are not. (A complete list is at slide 44 in the above tutorial.)

The most common properties which are inherited are:
· most of the font properties, including all the common ones, but see
 slides 56ff on font-size
· all of the list properties,
· some of the text properties, including color, text-align and text- indent

 So, for example, if you have specified that the font-family for a div is Arial, then all headlines, paragraphs, lists, etc. in that div will automatically be Arial.

 Similarly, if you specify

 body {font-family: Arial}

 Then the all the elements on the page will be rendered in Arial, unless you |
 over-ride some elements in specifically in your CSS (see the Cascade
 immediately below) or with in-line styling.

 Finally, remember that you can always over-ride inheritance with your CSS.

[bookmark: _Toc331148209]B. The Cascade
When more than one styling declaration could apply to an element, there needs to be some way to decide which one gets precedence. This is called the cascade.

The best basic explanation of inheritance is at http://css.maxdesign.com.au/downloads/css-cascade/
You should read it before proceeding! It is also in the Chapter 1 Moodle folder.

There are a few basic principles:
· If one styling is more specific than the other, then the more specific one is
 implemented.
 For example, if the body { } specifies black as the color, but an h1 { } specifies red,
 then the h1 styling rules.
· If two styles (of the same weight) conflict, then the most recent one rules.
 This means that in-line styling over-rides style sheets.
· Some style rules may be designated as !important, and they take precedence over
 those which are not.
· The author’s styling over-rides the user’s, except for !important rules, where the
 user’s over-ride.
 This is to allow visually handicapped users to over-ride author rules.
 For example, on your computer you may set the minimum font-size in your browser
 and that will over-rule what the page author has specified.

Here is what w3c has to say about “the cascade” in section 6.4.1:
 http://www.w3.org/TR/REC-CSS2/cascade.html#cascade

[bookmark: cascading-order][bookmark: _Toc331145598][bookmark: _Toc331148210]Cascading order
To find the value for an element/property combination, user agents must apply the following sorting order:
1. Find all declarations that apply to the element and property in question, for the target media type. Declarations apply if the associated selector matches the element in question.
2. [bookmark: x11]The primary sort of the declarations is by weight and origin: for normal declarations, author style sheets override user style sheets which override the default style sheet. For "!important" declarations, user style sheets override author style sheets which override the default style sheet. "!important" declaration override normal declarations. An imported style sheet has the same origin as the style sheet that imported it.
3. The secondary sort is by specificity of selector: more specific selectors will override more general ones. Pseudo-elements and pseudo-classes are counted as normal elements and classes, respectively.
4. Finally, sort by order specified: if two rules have the same weight, origin and specificity, the latter specified wins. Rules in imported style sheets are considered to be before any rules in the style sheet itself.
Apart from the "!important" setting on individual declarations, this strategy gives author's style sheets higher weight than those of the reader. It is therefore important that the user agent give the user the ability to turn off the influence of a certain style sheet, e.g., through a pull-down menu.
In the material above:
· You are the author.
· The user is the person reading your page, who may choose to override system colors etc.

Details on “specificity” may be found in section 6.4.3 of the above reference.

Basically,
· Any id rule is more specific than a general rule.
· If a rule applies to a descendent/id nested inside parent, then the descendent rule is
 more specific.
· If a descendent has no rule, then the parent’s rule applies (inheritance.)
· Smaller, bolder, % and other relative terms are with computed relative to the parent.
 For example, the font-size is smaller than the parent’s font-size.
 See section 6.1 of the reference above for details about these calculations and
 the Russ Weakley slides about font-size and calculated values.

[bookmark: _Toc331148211]10. Addendum on the Box Model and Other Important Miscellany
[bookmark: _Toc331148212]A. SELECTORS
Remember how class selectors work!
<p class="right">
This paragraph will be right-aligned.
</p>

<p class="center">
This paragraph will be center-aligned.
</p>

In your CSS to align paragraphs in the right and center classes:
p.right {text-align: right}
p.center {text-align: center}

OR to align all elements in those classes:
.right {text-align: right}
.center {text-align: center}

See also
http://www.westciv.com/style_master/academy/css_tutorial/selectors/class_selectors.html
http://css.maxdesign.com.au/selectutorial/

[bookmark: _Toc331148213]B. VISIBILITY
For any element you may change whether or not it is visible on the page. For example, on your html page you may have
<p class=’errorMessageHidden’>You need to enter your phone number.</p>
And in your css you may have:
.errorMessageHidden {visibility:hidden}
.errorMessageShown {visibility:visible}
And you will use code to change the class for your paragraph, according as whether or not you want the message to be visible on the page.

NOTE:
 display: none will hide the element without taking up any space.
 visibility: hidden will hide the element but still allocate space to it.

[bookmark: _Toc331148214]C.SIZE:

1. 'Width' refers to the content element (inside).
2. The total width of the child = the width of the parent's content

(2 margins + 2 borders + 2 paddings + content width)= parent content width.

3. Margins may be negative - in which case you may get a wider child than
parent.

4. This is true whether you size elements with % or units.

5. Background extends into the padding, but not the margins - see
 http://www.mykiss.de/ch07_02.htm

6. When elements conflict (are in the same place) the z-index may be used to
specify which is on top (the higher z-index).
[bookmark: _Toc331148215]D.POSITION:
Go over notes, previous handout & w3schools floats. For more info see also
http://css.maxdesign.com.au/floatutorial/

Recall from above that
· absolute position is measured from the top left;
· relative position is measured from the parent element;
· floats work within whatever box has been specified.

The handout also talks about fixed vs liquid layouts.
Layouts use % and fixed used size measurements (em, px, in etc.)

[bookmark: _Toc331148216]E.LAYOUT REMINDERS:
· Consistent look-and-feel
· Look and feel appropriate for target audience
· Clear, consistently-placed navigation
· Easy to read material - short sentences and paragaraphs, choice of font and colors
· Material can still be interesting and lively
· KISS
· Accesibility - for blind, color-blind, etc. users
· Simple ratios in layout look nicer
· OK to use a template for CSS layout - but reference it

[bookmark: _Toc331148217]11. Pseudo-classes, Floats, CSS3 and more advanced features
Pseudo-classes are used to style certain elements based on an attribute. The most common use is to style links or focus (where the cursor is when the user is filling out a form). CSS3 has added the ability to style differently the first child of an element.

Floats are used to “float” text around an image or other element. They can be tricky, but there are good tutorials at http://css.maxdesign.com.au/floatutorial/ and http://www.html.net/tutorials/css/lesson13.php (lessons 13 and 14) and http://www.w3schools.com/cssref/pr_class_float.asp An excellent tutorial on floats and clears is at http://www.w3.org/community/webed/wiki/Floats_and_clearing

CSS3 has added several interesting features. We will not discuss these features, but you know enough now to learn about them on your own if you are interested. The most important ones are:
· Relational selectors
 You can now select using the DOM descendents.
 For example, child (ol>li) will give you only the li’s which are children of ol’s (and not
 those which are children of ul’s.)
 In addition to the child (immediate descendent) there are relational selectors for
 descendents and siblings.
· Structural pseudo-classes
 This uses psuedo classes to do work similar to the relational selectors.
 For example, ol:first-child will give you the first element in the list and ol:nth-child(3)
 will give you the 3rd element in the list.
· More pseudo classes - advanced
· Gradients – to get smooth color transitions-rotations, and other transforms and
 scaling
· More attribute selectors
 You can now more advanced selecting on the value of an attribute
· Browser-specific styling – mainly for rounded corners and drop shadows.
 You can find more information on the Web Centric Resources page; use of these is a
 last resort.
· More color control – HSL specification of colors and also specifying opacity through
 RGBA and HSLA.

[bookmark: _Toc331148218]12. References
For basic tutorials, there are several good choices:
 Both htmldog https://www.htmldog.com/guides/css/ and w3schools
 https://www.w3schools.com/css/default.asp have good tutorials to get you
 started.
 There is also a good tutorial at http://html.net/tutorials/css/
 If you have used CSS a little, then you might prefer the tutorial at Tutorialspoint
 https://www.tutorialspoint.com/css/index.htm

The two best basic books I have found on the subject are

 Cascading Style Sheets, The Definitive Guide by Eric Meyer –pub. by O’Reilly

 Teach yourself CSS in 24 Hours by Kim Bartlett – pub by SAMS

As noted above, the Eric Meyer book is available throuh the ACM O'Reily site.

Eric Meyer has also written a Programmer’s Reference to Cascading Style Sheets 2.0.
This book is a reference manual - not something you can learn from. He has other writing
 also on the ACM site.

After you know some CSS, an excellent book to look at is Andy Budd et al’s CSS Mastery: Advanced Web Standards and Solutions. The Third Edition is in the ACM site https://learning.oreilly.com/library/view/css-mastery-third/9781430258643/ It includes Responsive Web Design.

The HTML, XHTML, and CSS Bible, Fifth Edition By Steven Schafer is also available in the ACM site https://learning.oreilly.com/library/view/html-xhtml-and/9780470523964/

Russ Weakley has some excellent slides. Some are avaialble free at http://css.maxdesign.com.au/#downloadable and other more specific ones are at http://www.slideshare.net/maxdesign (to the right of the slide window, scroll down to find topics such as CSS Best Practices and CSS Media Queries.)

For advanced CSS3 I like Sitepoint’s book HTML5 and CSS3 for the Real World, by Alexis Goldstein et al, but there are also many on-line tutorials on the Resources page.

There are excellent guides at https://developer.mozilla.org/en-US/docs/Web/CSS/padding (use menu on the left), including tutorials at https://developer.mozilla.org/en-US/docs/Web/CSS

In addition to that, the URL page for the course has many links to tutorials and other
resources. There are many excellent links there. That page also lists many sources of CSS templates, beyond those in the Chapter 1 folder for this course. See http://web.simmons.edu/~menzin/WebCentricResources.html#Links_and_Resources_for_CSS and scroll down to the Sample Layouts.

Those of you who are interested in graphic design should also browse through some of the” tutorials and articles” and “links and resources” sections of the CSS part of this page. You should also get the free newsletter at Smashing Magazine https://www.smashingmagazine.com/the-smashing-newsletter/
And regularly check out A List Apart https://alistapart.com/

image1.png

