Debugging Process
Debugging is the process of finding and fixing errors in a program or system.
There are run time errors (the code doesn't run) & logical errors (it runs, but you get the wrong result.)
In both cases, a slightly more detailed view of the steps would be:
1. Identify the error (e. g. 'The result was X instead of Y', or 'the program crashed'). You will need to be able to reproduce the error too.
2. Find the place in the code where the error occurred. (e. g. 'everything worked well until we got to this step'.)--- obviously you want to narrow down as much as possible- to one statement.
3. Analyze what went wrong ('I forgot to close the braces', 'A parameter was missing', 'I misused "this"')
4. Fix the error.
5. Make sure that other code doesn't depend on the error, & that you haven't introduced any new errors with your "fix".

Step 3 often requires you to look up a reference on a method, or check documentation, or (for the missing brace) use syntax highilightin.

Let's talk about Step 2, as that is where a debugger can really help us. Before turning to that, it is important to remember that as you work on steps 2, 3, and 4 you want to
· be methodical,
· change only one thing at a time, starting with the earliest error you found
· document what you are changing as you create new hopefully less buggy versions of your code.
 I find it helpful to make comments in my code (all of which will be deleted in the final version)
such as "changed from for loop to while loop in function X in version Y which let me exit
when the selected option was found. Function X now works, but function Z doesn't."
 I also, for small programs, will name them with version numbers and sub-numbers, such as
_v1, _v2, _v2a, _v2b, _v3 etc. This is probably not best practices (certainly not for team projects where you need to share code- then you want a version control system such as GIT), but is okay for small on-your-own programs.

Now, on to the de debugger. There are three basic features in using a debugger:
· Breakpoints
· Watch expressions
· Stepping through code.

Breakpoints:
A breakpoint is a place in your code where you ask the debugger to stop so that you can examine what is going on.
It is very common to set a breakpoint at a particular line of code, but there are other ways to set a breakpoint. For example, you might set one when a particular event happens. (The Chrome video sets a breakpoint at a mouse click. We will also, later on, see examples of other kinds of events, such as changes in what is shown on the webpage.)
In Chrome adding the statement debugger; to your script will create a breakpoint and have the web console tools open up (if they aren't already open.)

Watch expressions
A watch expression is some expression whose value you wish to watch as the code executes. In CCS112 you did this by hand, but a debugger will do it for you. The expression you are watching might be a counter, an accumulator, a string you are constructing etc.)
Stepping through code
A debugger will let you execute your code – typically until you come to a breakpoint. You can do this from the first line of code if you wish.

Then you can step along, one line at a time if you wish, or you can ask to have the code run until it reaches the next breakpoint.

Often, the code will come to the execution of some function. Your choices there are to:
 step into (go through the function line by line)
 step over (execute the whole function)
 step out of (if you have stepped into a function, this will finish executing it.)

If I am using a function which is built in, or from a popular library, I will step over it.
If I think a function I created might be where the buggy code is, then I will step into it, and may be using watch expressions at the same time.

Other Info
Debuggers will have other features too, such as examining the call stack, and looking at the CSS for a specific element, etc. but the three elements above are what you will use all the time.
Also, debugging should be distinguished from testing , which is about trying to be sure that you code doesn't have bugs. (Djikstra famously said "Program testing can be a very effective way to show the presence of bugs, but it is hopelessly inadequate for showing their absence." Nonetheless, testing is an important part of designing and implementing a system.)
There is a well developed body of knowledge and tools for testing.

References
· https://www.youtube.com/watch?v=x4q86IjJFag Brad Traversy has an introduction to using the basic Chrome Developer Tools. It starts with looking at Elements, etc. You have seen much of this already, but he adds some new tricks. Likewise for using methods associated with the console. After about minute 36 he turns to issues which come later in the course.

· You already have the links from the "Debugging Tools" reference.
· Chrome tools start at https://developers.google.com/web/tools/chrome-devtools/javascript (which I think goes pretty fast - and fail to mention that if you want conditional breakpoints at some line then you need to right click on the blue breakpoint arrow.)
· Firefox toools start at https://developer.mozilla.org/en-US/docs/Tools

· https://www.youtube.com/watch?v=AX7uybwukkk&t=5s is a short, excellent video to watch, but he is debugging a node.js application, so it may be a little confusing until you are farther along in the course.
He follows it up https://www.youtube.com/watch?v=yFtU6_UaOtA with debugging node in VS Code - also for later in the course.
· https://www.youtube.com/watch?v=TtsvMRxmfGA or the shosrter version at https://www.youtube.com/watch?v=pS92BptnASE on essential JS debugging is worth watching., especially for more complex projects. Start with the shorter version.

