JSLint is the best known JavaScript code checker/verifier.
It was written by Douglas Crockford and it advertises that it will “hurt your feelings.” It will also improve your programming style.
And it will keep you out of trouble. For example, while semi-colons are ‘optional’ in JavaScript, if you don’t insert them then the interpreter will --- and not always where you want them to be.
JSLint can be found at http://jslint.com/
There is also a fork of it called JSHint. It can be found at http://jshint.com/ and purports to be a kinder. gentler version.
Nonetheless, I usually use JSLint.
Here are some useful insights about it.

 See also http://www.javascriptlint.com/ (great introduction).
 https://github.com/douglascrockford/JSLint (current versions).
Here are the settings I use:
Tolerate (column 1) eval : set it to 'true' so can evaluate expressions in document.write
Tolerate (column 2) 'missing us strict pragma': set it to true so don't get error messages for certain built in functions
Assume (column 4) a browser if you are testing an html page (set it to true)
Assume (column 4) console, alert,..... so don't get error messages for prompt and alert: set it to true
I use 4 for indentation.

http://www.crockford.com/jslint/lint.html (page has moved)

JSLint
The JavaScript Verifier
©2002 Douglas Crockford
JSLint is a JavaScript program that looks for problems in JavaScript programs.
What is JSLint?
When C was a young programming language, there were several common programming errors that were not caught by the primitive compilers, so an accessory program called lint was developed which would scan a source file, looking for problems.
As the language matured, the definition of the language was strengthened to eliminate some insecurities, and compilers got better at issuing warnings. lint is no longer needed.
JavaScript is a young language. It was originally intended to do small tasks in webpages, tasks for which Java was too heavy and clumsy. But JavaScript is a very capable language, and it is now being used in larger projects. Many of the features that were intended to make the language easy to use are troublesome for larger projects. A lint for JavaScript is needed: JSLint, a JavaScript syntax checker and validator.
JSLint takes a JavaScript source and scans it. If it finds a problem, it returns a message describing the problem and an approximate location within the source. The problem is not necessarily an error, although it often is. JSLint looks at some style conventions as well as structural problems. It does not prove that your program is correct. It just provides another set of eyes to help spot problems.
JSLint defines a professional subset of JavaScript, a stricter language than that defined by Edition 3 of the ECMAScript Language Specification. The subset is related to recommendations found in Code Conventions for the Java Programming Language. There are differences, of course, because JavaScript is not Java.
Semicolon
JavaScript uses a C-like syntax which requires the use of semicolons to delimit statements. JavaScript attempts to make semicolons optional with a semicolon insertion mechanism. This is dangerous.
Like C, JavaScript has ++ and -- and (operators which can be prefixes or suffixes. The disambiguation is done by the semicolon.
In Javascript, a linefeed can be whitespace or it can act as a semicolon. This replaces one ambiguity with another.
JSLint expects that every statement be followed by ; except for for, function, if, switch, try, and while. JSLint does not expect to see unnecessary semicolons or the empty statement.
Line-Ending Punctuators
As a further defense against the semicolon insertion mechanism, JSLint expects the last token on a line (ignoring whitespace and comments) to be one of these punctuation characters or operators:
, . ; : { } ([= < > ? ! + - * / % ~ ^ | &
== != <= >= += -= *= /= %= ^= |= &= << >> || &&
=== !== <<= >>= >>> >>>=
JSLint does not expect to see at the end of a line an identifier, a string, a number, closer, or a suffix operator:
)] ++ --
JSLint allows you to turn off the Strict Line Ending test.
Semicolon insertion can mask copy/paste errors. If you always break lines after operators, then JSLint can find them.
Comma
The comma operator can lead to excessively tricky expressions. It can also mask some programming errors.
JSLint expects to see the comma used as a separator, but not as an operator (except in the initialization and incrementation parts of the for statement). It does not expect to see elided elements in array literals. Extra commas should not be used. A comma should not appear after the last element of an array literal or object literal because it can be misinterpreted by some browsers.
Required Blocks
JSLint expects that if and for statements will be made with blocks {that is, with statements enclosed in braces}.
JavaScript allows an if to be written like this:
if (condition)
 statement;
That form is known to contribute to mistakes in projects where many programmers are working on the same code. That is why JSLintexpects the use of a block:
if (condition) {
 statement;
}
Experience shows that this form is more resilient.
Forbidden Blocks
In many languages, a block introduces a scope. Variables introduced in a scope are not visible to other parts of the program.
In JavaScript, blocks do not introduce a scope. There is only function-scope. JavaScript's blocks confuse experienced programmers and lead to errors.
JSLint expects blocks with function, if, switch, while, for, do, and try statements and nowhere else.
Expression Statements
An expression statement is expected to be an assignment or a function/method call. All other expression statements are considered to be errors.
Var
JavaScript allows var definitions to occur anywhere within a function. JSLint is more strict.
JSLint expects that a var will be declared only once, and that it will be declared before it is used.
JSLint expects that parameters will not be declared as vars.
JSLint does not expect the arguments array to be declared as a var.
Switch
A common error in switch statements is to forget to place a break statement after each case, resulting in unintended fall-through.JSLint expects that the statement before a case or default is one of these: break, case, continue, return, switch, or throw.
With
The with statement was intended to provide a shorthand in accessing members in deeply nested objects. Unfortunately, it behaves very badly when setting new members. Never use the with statement. Use a var instead.
JSLint does not expect to see a with statement.
=
JSLint does not expect to see an assignment statement in the condition part of an if or while statement. This is because it is more likely that
if (a = b) {
 ...
}
was intended to be
if (a == b) {
 ...
}
If you really intend an assignment, wrap it in another set of parens:
if ((a = b)) {
 ...
}
== and !=
The == and != operators do type coercion before comparing. This is bad because it causes '' == 0 to be true. This can mask type errors.
When comparing to any of the following values, use the === or !== operators, which do not do type coercion.
0 '' undefined null false true
If you want the type coercion, then use the short form. Instead of
(foo != 0)
just say
(foo)
and instead of
(foo == 0)
say
(!foo)
Labels
JavaScript allows any statement to have a label, and labels have a separate name space. JSLint is more strict.
JSLint expects labels only on statements that interact with break: switch, while, do, and for. JSLint expects that labels will be distinct from vars and parameters.
Unreachable Code
JSLint expects that a return, break, continue, or throw statement will be followed by a } or case or default.
Confusing Plusses and Minusses
JSLint expects that + will not be followed by + or ++, and that - will not be followed by - or --. A misplaced space can turn + + into ++, an error that is difficult to see. Use parens to avoid confusion..
++ and -- Considered Harmful
The ++ (post-increment) and -- (post-decrement) operators have been known to contribute to bad code by encouraging excessive trickiness. They are second only to faulty architecture in enabling to viruses and other security menaces. JSLint does not expect to see them by default. JSLint currently tolerates the pre-increment and pre-decrement forms.
Void
In most C-like languages, void is a type. In JavaScript, void is a prefix operator that always returns undefined. JSLint does not expect to see void because it is confusing and not very useful.
Regular Expressions
JavaScript's syntax for regular expression literals overloads the / character. To avoid ambiguity, JSLint expects that the character preceding a regular expression literal is a (or = or : or , character.
The ECMAScript specification requires that the / character within a regular expression literal be escaped.
Not Looked For
JSLint does not look at the use of comments and whitespace. It does not care how you format your code. The only exception to this is the Strict Line Ending test.
JSLint does not do flow analysis to determine that variables are assigned values before used. This is because variables are given a value (undefined) which is a reasonable default for many applications.
JSLint does not do any kind of global analysis. It does not attempt to determine that functions used with new are really constructors, or that method names are spelled correctly.
HTML
JSLint is able to handle HTML text. It can inspect the JavaScript content contained within <script>...</script> tags. It also inspects the HTML content, looking for problems that are known to interfere with JavaScript:
· All tag names must be in lower case.
· All tags that can take a close tag (such as </p>) must have a close tag.
· All tags are correctly nested.
· Entities must be used for literal '<'.
JSLint is less anal than the sycophantic conformanity demanded by XHTML, but more strict than the popular browsers.
JSLint also checks for the occurence of '</' in string literals. You should write '<\/' instead. The extra backslash is ignored by the JavaScript compiler but not by the HTML parser. Tricks like this should not be necessary, and yet they are.
Report
If the source is as JSLint expects, it generates a function report. It lists for each function:
· The line number on which it starts.
· Its name. In the case of anonymous functions, JSLint will "guess" the name.
· The parameters (including arguments if used).
· The vars.
· The global vars. An unexpected item here can be an indication of an error.
· The labels.
These suffixes may appear in the report:
	(closure)
	The parameter or var is used by an inner function.

	(outer)
	The var is defined by an outer function.

	(unused)
	The var is defined but not used. This may be an indication of an error.

	(?)
	The global var is defined by default within a function. This may be an indication of an error. It can also be a normal occurrence because JSLint does not know about global vars or functions that are defined by the browser or by other files.

The report will also include a list of all of the member names that were used.
Global
You can include in your program a comment that lists the global functions and objects that your program depends on, but that are not defined in your program or script file. Including this information can improve the quality of the report that is generated.
A global declaration can look like this:
/*global window, document, navigator, alert */
A global declaration starts with /*global. Notice that there is no space before the g.
Feedback
Please let me know if JSLint is useful for you. Is it too strict? Is there a check or a report that could speed up your debugging?douglas@crockford.com
I intend to adapt JSLint based on your comments. Keep watching for improvements.
Try it
Try it. Paste your script into the window and click the button. The analysis is done by a script running on your machine. Your script is not sent over the network.
It is also available as a Konfabulator widget. You can check a file by dragging it and dropping it on the widget. You can recheck the file by double-clicking the widget.
It is also available in a WSH Command Line version.
Implementation
JSLint uses a Pratt Parser (Top Down Operator Precedence). It is written in JavaScript. The full source code is available.

