Class Notes for Chapter 5 – Assignment 0
Chapter 2 - Lexical Scope
"In other words, lexical scope is based on where variables and blocks of scope are authored, by you, at write time, and thus is (mostly) set in stone by the time the lexer processes your code."
Review colored diaram with bubbles near start of chapter.
You can see out, but you can't see in (like a window).
Scoping stops at the first match- in case you are in the bad habit of re-using identifiers.
Don't use eval() or with()
Chapter 3 – Function vs. Block Scope
Any questions about the doSomething/doSomethingElse example near the start of the chapter?
What about the foo/bar example right after it?
Function vs. function expression – not polluting the global name space
IIEFs
setTimeout() is a beloved example in JS books. The syntax is

 setTimeout(function, milliseconds, param1, param2, ...)
The JS script waits the indicated number of milliseconds, and then calls the function which is passed to setTimeout(). The rest of the parameters are those which are passed to function.
Example: From w3schools.com https://www.w3schools.com/jsref/met_win_settimeout.asp
 var myVar;
 function myFunction() {
 myVar = setTimeout(alertFunc, 3000);
 }

 function alertFunc() {
 alert("Hello!");
 }
Example: From Kyle Simpson with an anonymous function
https://learning.oreilly.com/library/view/you-dont-know/9781449335571/ch03.html
 setTimeout(function(){
 console.log("I waited 1 second!");
 }, 1000);

Either way the function passed to setTimeout is a callback function.

Kyle Simpson recommends that you always name your function expressions – for readabilty- except for IIFEs.
 This mysterious code:

var a = 2;

(function IIFE(def){
 def(window);
})(function def(global){

 var a = 3;
 console.log(a); // 3
 console.log(global.a); // 2

});

And explanation:

 The def function expression is defined in the second-half of the snippet, and then passed as a parameter (also called def) to the IIFE function defined in the first half of the snippet. Finally, the parameter def (the function) is invoked, passing window in as the global parameter.
Let's take apart the code.

 (function IIFE(def){
 //some code
 }) (some parameter we pass to IIFE and refer to as def inside IIFE)

 Next let's look at the parameter we are pass to IIFE--- it is defined as
 function def(global){
 var a = 3;
 console.log(a); // 3
 console.log(global.a); // 2
}
That is, this function gets a parameter global passed to it, (global is presumably an object, as you will see in a second), sets a to be 3 and console.logs it, and then console.logs global.a
In other words, IIEF is going to be passed a function (parameter is def --- what we actually will pass is the code just above these words) and that function in turn has a parameter global which needs to be passed to it.
Now look at the code inside IIFE---- all it does is execute the def (the function passed to it) using window as the value for global.

So what is actually executed is
 var a = 3;
 console.log(a); // 3
 console.log(window.a); // 2

Why bother, you might ask? Because this pattern is used in defining modules, which are a way to provide a package with useful functionality, and still avoid naming conflicts, and keep certain code private. Stay tuned for node.js

Why block scope is wonderful.
Try…catch has block scope.

ES6 introduced let and const which are block-scoped variables. Their scope is the nearest enclosing set of braces { }.
NOTE: In a for-loop for(let i = 0; I < 7; i++) {
 //some code
 }
the enclosing braces are the { }
Not only is i bound to the for-loop, but you get a new binding (& context) for i for each iteration of the for loop . This has enormous implications when we use closures:
Menzin's rule to avoid untold hours of debugging:
Whenever you write a for-loop use let to define the loop variable --- never use var and never omit the var/let.

 Now, in small groups, please read the following articles:
 Please take turns reading the articles aloud and making sure everyone follows the arguments!
 While you certainly can read the articles online, the copies of them in the course site have some
 helpful explanations/comments which I have added.

 Dmitri Pavluvin on closures

 Prashant Ram on closures – by the time you come to this article you should predict the results
 of the code snippets before you look at the explanations!
 Madhan Naaranajan on closures – likewise on predicting the results.

 Gemma Stiles on closures – OPTIONAL; read only if you want another explanation.

Practice: Write a function upTo which accepts a number upLimit and defines (& then returns) a new function multiples(x). The function multiples(x) will console.log an array with all the multiples of |x| up to and including upLimit. Assign this wonderful function with was returned by upTo(30) to the variable findMults30 and then call findMults30 on 4. (You should get the array [4, 8, 12, 16, 29, 24, 28])
 What behavior would you expect from
 let mystery = upTo(11);
 mystery(3);

Think:
Where would the click-counting example be useful? Have you seen anything like this?

How might a website use this to see how 'sticky' it is (how many clicks you make on the site)?

How might it be modified if you were writing a code for a database which assigned surrogate keys to several different tables? That is, you want one function which keeps track of all the last surrogate key assigned to several tables, and when you call the function for a particular table you will get a new surrogate key for that table.

As time allows – a preview of hoisting (discussed in Assignment 1)
Because of all the things discussed in Kyle Simpson's book, the following happens:
· Functions (but not function expressions) are hoisted to the top of the block of code they are in
· Var declarations (but not let or const declarations) are hoisted to the top of their function definitions.
The result is that if you have code which looks like:

var X;

function outer(paramOuter) {
 //first block of code is in outer
 var outerVar;
 let outerLet;
 //secod block of code is in outer
 function inner() {
 //third block of code is in inner
 const hmm = function () { //some code };
 var innerVar;
 let innerLet;
 //fourth block of code is in inner
 } / /end of inner
} //end of outer

Then the JS compiler will hoist the var and function definitions so that it looks like:

function outer(paramOuter) {
 function inner() { //hoisted – and functions are hoiseted above the hoisted vars
 var innerVar; //hoisted WITHIN inner
 //third block of code is in inner
 const hmm = function () { //some code };
 let innerLet;
 //fourth block of code is in inner
 var outerVar; //hoisted - just after the hoisted inner
 //first block of code is in outer
 let outerLet;
 //secod block of code is in outer
} //end of outer

Another way to say this is:
 First hoist any function to the top of its enclosing block
 Then hoist any var declarations to just below the hoisted functions.

Simpson explains carefully (so please read carefully) when values are undefined and when you g get what kinds of errors.

That said, it is better to be organized and declare all your var's, let's and const's at the top of their functions or blocks --- and the same for nested functions.

Now that you've thought about hoisting, can you see what happens to the index variable in a for loop inside a function whern we code: for (var i=0; i <10; i++){ } ?
Hint: var's have function scope and let's have block scope.

Closures and loops – Examples for Class Notes for Assignment 0
VERSION 1- the troubles
var funcs = {};
for (var i = 0; i < 3; i++) { // let's create 3 functions
funcs[i] = function() { // and store them in funcs
 var item = "item" + i; // inside
 console.log("item: " + item + ", i: " + i); // each should log its value.
 };
}
for (var j = 0; j < 3; j++) {
 funcs[j](); // and now let's run each one to see
}

VERSION 2 – with IIFE – you may see this legacy solution to the problem
var funcs = {};
for (var i = 0; i < 3; i++) { // let's create 3 functions
 j = i;
funcs[i] = (function() { // and store them in funcs
 var item = "item" + i; // inside
 console.log("item: " + item + ", i: " + i); // each should log its value.
 })(j);
}
for (var j = 0; j < 3; j++) {
 funcs[j]; // and now let's run each one to see
}

VERSION 3 – with let- the modern solution
var funcs = {};
for (let i = 0; i < 3; i++) { // let's create 3 functions
funcs[i] = function() { // and store them in funcs
 var item = "item" + i; // inside
 console.log("item: " + item + ", i: " + i); // each should log its value.
 };
}
for (var j = 0; j < 3; j++) {
 funcs[j](); // and now let's run each one to see
}

Now suppose you want functions in your array-
VERSION 1 - the troubles
var funcs = [];
for (var i = 0; i < 3; i++) { // let's create 3 functions
funcs[i] = function(x) { // and store them in funcs
 console.log(i*x)
 };
}
for (var j = 0; j < 3; j++) {
 funcs[j](10); // and now let's run each one to see
}

VERSION 2 – using j – the legacy solution (trick does NOT work for example on first page.)
var funcs = [];
for (var i = 0; i < 3; i++) { // let's create 3 functions
 j = i;
funcs[i] = function(x) { // and store them in funcs
 console.log(j*x)
 };
}
for (var j = 0; j < 3; j++) {
 funcs[j](10); // and now let's run each one to see
}j

VERSION 3 – using let – the modern solution
var funcs = [];
for (let i = 0; i < 3; i++) { // let's create 3 functions
funcs[i] = function(x) { // and store them in funcs
 console.log(i*x)
 };
}
for (var j = 0; j < 3; j++) {
 funcs[j](10); // and now let's run each one to see
}

