Classwork After Assinment 1 of Chapter 5

The last part of the Scope & Closure book
1. The classic conundrum
Paste into your console:
for (var i=1; i<=5; i++) {
 setTimeout(function timer(){
 console.log(i);
 }, i*1000);
}

The above is the 'classic conundrum' – now modify it by replacin the var with a let
for (let i=1; i<=5; i++) {
 setTimeout(function timer(){
 console.log(i);
 }, i*1000);
}

What happens?

2. The Module pattern
Consider this code from the end of the book:
function CoolModule() {
 var something = "cool";
 var another = [1, 2, 3];

 function doSomething() {
 console.log(something);
 }

 function doAnother() {
 console.log(another.join(" ! "));
 }

 return {
 doSomething: doSomething,
 doAnother: doAnother
 };
}

var foo = CoolModule();

foo.doSomething(); // cool
foo.doAnother(); // 1 ! 2 ! 3

Notice that our mini-module returns an object with all the needed functionality, but the user (who has that functionality thru foo) can't modiffy it. Stay tuned!
3. Then it makes this more complex with the code below – my notes are in red.

var foo = (function CoolModule(id) { //foo is in IIE which we will execute with id having
 // the value of "foo module" – in red near the end

 //This function CoolModule defines 3 inner functions - change,identify1, and identify2;
 //It also defines an object publicAPI, which it returns.
 //So the results of var foo = (result of running this IIFE is that foo now holds that object.
 //What is in that object? A key identify, which has been set to be the function identify1, and
 //another key change, which has been set to be the change function --- a function which changes
 //the value of the identify key from identify1 to identify2.

 function change() {
 // modifying the public API
 publicAPI.identify = identify2;
 }

 function identify1() {
 console.log(id);
 }

 function identify2() {
 console.log(id.toUpperCase());
 }

 var publicAPI = {
 change: change,
 identify: identify1
 };

 return publicAPI;
})("foo module");

foo.identify(); // foo module still running identify1
foo.change();
foo.identify(); // FOO MODULE now running identify2

So, when we get to node.js you will see modules which return this kind of a public API – for example, a module may take a file name or path as a parameter and do stuff like open the file for reading or writing.

4. In this and objects – Chapter 1, the most important summary is:
 We said earlier that this is not an author-time binding but a runtime binding. It is contextual based on the conditions of the function’s invocation. this binding has nothing to do with where a function is declared, but has instead everything to do with the manner in which the function is called.
When a function is invoked, an activation record, otherwise known as an execution context, is created. This record contains information about where the function was called from (the call-stack), how the function was invoked, what parameters were passed, etc. One of the properties of this record is the this reference, which will be used for the duration of that function’s execution.

5.

