JavaScript Innovations: ES6 aka ES2015, soon to be followed by more versions.

The official name for JavaScript is ECMAScript. ES5 was released in 2009, so ES6, released in 2015, is a major update. More updates have been coming each year. Some authors refer to all the later versions as ES6, some refer to them as ESNext, and some refer to a specific update as ECMAScript2015 or ECMAScript2022, etc.

When ES6 was first introduced, some browsers didn’t fully implement ES6 it so if you use ES6 then you need to use babel, at https://babeljs.io/ to pre-compile ES6 back to ES5 for those browsers. Happily, that time is now past us and all browsers have almost all of the somewhat current version of ECMAScript implemented.

A good table of what ESNext features are supported in what browsers is at http://kangax.github.io/compat-table/es6/ and you can check specific features at http://caniuse.com

At this time, and for the reasons explained below, we are sticking with ES5 in CS321 at the start, but will move to ES6 fairly soon. Why are we starting with ES5?. If is important to understand prototypical inheritance, and advanced features (e.g. Doug Crockford’s book and videos on “JavaScript: The Good Parts” and the Kyle Simpson books at https://github.com/getify/You-Dont-Know-JS - only the last one uses ES6) and then moving on to Node.js (which will require a knowledge of some of ES6’s new features.) When we get to Node.js you will need to read ES6 code, but I will step you through that as needed.

So, what is new in ES6 & Beyond (sometimes called ES Next or JavaScript Next)? Here goes, although some of this won’t make sense until later in the course.
Some of the ES6 innovations are “syntactic candy” – that is new ways to write ES5 code and ways to avoid old hacks. The arrow syntax does simplify old functionality (in its treatment of this so you can avoid the self=this hack - but the binding of this when you use arrow notation is a sea change and you should be aware of it or it will stab you in the back), but its popularity is b/c it is more comfortable for programmers used to coding Java. Similarly, ES6 adds default parameters to functions (simplifying the hack of x = x||defaultValue). Similarly, again, although ES6 has added classes the ES6 inheritance is still the prototype inheritance of ES5 and does not imitate the classes from other languages.
The simplest and very useful new feature is the introduction of let and const, which give block-level scope (to vars inside { } and also give new bindings for loop variables and this).
An excellent summary of the ES6 changes is at https://babeljs.io/docs/learn-es2015/ Another good summary is at https://github.com/lukehoban/es6features
A more detailed description is at http://es6-features.org/#Constants
Some short tutorials are at https://html5hive.org/es6-and-babel-tutorial/ and http://qnimate.com/post-series/ecmascript-6-complete-tutorial/ (by feature), and http://javascriptissexy.com/understanding-es2015-in-depth-part-1-block-scope-with-let-and-const/ .
There is a list of more tutorials at https://github.com/ericdouglas/ES6-Learning#articles--tutorials and in the Web Centric Resources.
There are several excellent book-length articles on line:
Kyle Simpson’s “ES6 & Beyond” is at https://github.com/getify/You-Dont-Know-JS (scroll down a bit to get it – all his excellent books are there) and https://github.com/getify and available through the ACM-Safari site.
Nicholas Zakas’ “Understanding EcmaScript6” is at https://leanpub.com/understandinges6/read/#leanpub-auto-block-bindings and available through the ACM-Safari site.
Alex Rauschmayer’s Exploring ES6 is at
http://exploringjs.com/es6/index.html#toc_ch_faq
And JD Isaaks’ Book “Get Programming with JavaScript Next” is good.
Finally, the introduction of some of these ES6 features – e.g. modules – is important for Node.js. You can learn which features are needed and what they do at https://nodejs.org/en/docs/es6/ We will discuss this when we get to Node.

Preview of Coming Attractions: What else did ES6+ introduce? (Browse only, at this point):
More ES6 Syntax
· Rest parameters
· http://es6-features.org/#RestParameter
· https://exploringjs.com/es6/ch_parameter-handling.html#sec_rest-parameters
· https://learning.oreilly.com/library/view/understanding-ecmascript-6/9781492017509/xhtml/ch03.xhtml (search in this chapter for Rest Parameter).

· The spread operator
· https://learning.oreilly.com/library/view/understanding-ecmascript-6/9781492017509/xhtml/ch03.xhtml (search in this chapter for Spread Operator; it is directly aterthe section on the Rest Parameter).
This section starts with the very helpful comment, "Closely related to rest parameters is the spread operator. Whereas rest parameters allow you to specify that multiple independent arguments should be combined into an array, the spread operator allows you to specify an array that should be split and passed in as separate arguments to a function."
· https://adrianmejia.com/overview-of-javascript-es6-features-a-k-a-ecmascript-6-and-es2015/#Spread-operator
· https://exploringjs.com/es6/ch_parameter-handling.html#sec_rest-parameters

· So many types of for loops
· Multi-line strings

· Promises – this is a whole huge big deal and we will talk about it when we talk about asynchronous code.

· Destructuring, symbols and iterators, and generators --- these are also real, but I want to let you absorb the arrow functions first before I throw this at you. These introduce a lot of new syntax, which saves time, but not new concepts.

· Classes – this is syntactic sugar for people coming from Java etc. In ES6 inheritance remains prototype based.

· Modules – We will look at this as part of our work with node.js

