
XML programming
with SQL/XML
and XQuery

by J. E. Funderburk
S. Malaika
B. Reinwald

Most business data are stored in relational
database systems, and SQL (Structured
Query Language) is used for data retrieval
and manipulation. With XML (Extensible
Markup Language) rapidly becoming the de
facto standard for retrieving and exchanging
data, new functionality is expected from
traditional databases. Existing SQL
applications will evolve to retrieve relational
data as XML data using database or SQL
extensions for XML. New XML data will be
stored, searched, and manipulated in the
database as a “first class” citizen along with
existing relational data. Furthermore, new
applications will emerge that solely operate in
terms of XML. These new XML applications
operate on the same database using an XML
query language, XQuery. In this paper, we
describe an integrated database architecture
that enables SQL applications with XML
extensions as well as XQuery applications to
operate on the same data. The architecture
allows for a seamless flow from relational
data to XML and back.

The recent expansion of the Internet and invention
of the XML (Extensible Markup Language) data for-
mat has created both the opportunity and the need
for businesses to exchange information, and to
interoperate in a uniform way that has not been
achieved nor been possible before except in isolated
segments within the business community. Today’s
economic practices often create businesses and bus-
iness processes formed from many incompatible sys-
tems. The need to integrate and exchange data within

a company is as profound as it is between compa-
nies. Much of the data being exchanged are oper-
ational: data that enable transactions, determine the
course of business processes, and in the aggregate,
become business intelligence data that affect deci-
sions of business leaders.

The XML data format provides a way of regularizing
the storage of semi-structured data, historical data,
and other information requiring content manage-
ment. XML can be used to store the content itself
and data mined from the content. Data mined from
the content can be used to form catalogs, similar in
concept to card catalogs in libraries, which contain
existence and location information and possibly other
interesting summary information. Information mined
from content can be stored and used in business or
scientific intelligence queries.

Information that is low in quantity and importance
can be stored using a variety of simple techniques.
However, business-critical data and data in large
quantities require a data storage system that can
properly manage the data. Relational database man-
agers fulfill vital responsibilities in complex informa-
tion systems by consolidating storage and distribu-
tion of data. They provide a uniform, high-function
interface and support other features such as secur-
ity, data consistency, control, and the regularization
and automation of backup procedures. These re-

�Copyright 2002 by International Business Machines Corpora-
tion. Copying in printed form for private use is permitted with-
out payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copy-
right notice are included on the first page. The title and abstract,
but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and
other information-service systems. Permission to republish any
other portion of this paper must be obtained from the Editor.

FUNDERBURK, MALAIKA, AND REINWALD 0018-8670/02/$5.00 © 2002 IBM IBM SYSTEMS JOURNAL, VOL 41, NO 4, 2002642

sponsibilities have been established and relied upon
for many years; most systems are already in place
and are entrenched. It is vital that existing data stores
and business processes be extended to support XML
technologies in a variety of ways. Systems integra-
tors need to interact with existing data, implement-
ing new business processes using XML without the
need to write and continually rewrite low-level code
to interact between XML data and the interface tech-
nology supported by databases.

The most basic requirement is that data already
stored in relational database systems must be pub-
lishable as XML. Subsets of the data (or, in general,
the results of queries) must be able to be formed into
XML documents and sent to applications or consum-
ers elsewhere. Usually, XML documents must match
a particular XML format or schema. Such formats are
specified by DTD (Document Type Definition), XML
Schema, or by documentation. Existing data must
be transformed into forms that comply with the stan-
dard of interchange. These forms may or may not
be under the system integrator’s control and often
evolve over time. The ability to adapt easily is re-
quired.

XML programming model evolution

SAX (the simple API [application programming in-
terface] for XML)1 was the first popular interface for
XML programming. A SAX application was a set of
event handlers, each called when the parser encoun-
tered an element or some text in the document. With-
out any control over its execution, one had to build
XML applications as state machines in order to do
any nontrivial work. SAX became a de facto standard,
with the Java** language being the official binding
of the API. Non-Java language bindings cropped up,
but they were particular to a specific implementa-
tion of a SAX parser.

DOM (Document Object Model)2 followed and pro-
vided a navigational interface that standard program-
ming languages could use. A DOM application was
in control of its execution flow. This made the ap-
plication a normal program that could be organized
using familiar approaches. Navigation is performed
with individual steps using DOM function calls (such
as getFirstChild� and getNextSibling�). Processing a doc-
ument while validating its semantics or syntax (sup-
plementing a DTD) often required a rather verbose
and somewhat fragile program. Evolution of the
structure of the input document, although a prob-
lem under any circumstances, required a detailed ad-

justment of individual navigation steps and loops
written in a mix of programming language statements
and DOM interface calls. Without standard language
bindings, DOM applications were, by default, trivi-
ally dependent on a particular parser. Traditionally,
DOM-capable XML parsers have to read the entire
XML document into memory.

XSLT (Extensible Stylesheet Language Transforma-
tions)3 1.0 arrived, was the first recognized XML pro-
gramming language, and was substantially complete.
An XSLT program transforms its input document into
an output document using a programming construct
called templates. The input document is read into
memory, and traversed. At each point, template-
matching patterns are tested. When a match is found,
the template body is executed and a portion of the
output document is formed. A sublanguage called
XPath is used to form template-matching patterns
and to navigate within the input document tree, se-
lecting the desired element and attribute data to use
in expressions to form output or conditional logic.
XPath allows several navigations to be performed
in succession and various predicates can be applied
at each step. XSLT processes the input document
without type information and therefore processes
data in the document as text. It is also possible to
explicitly form expressions that perform basic oper-
ations on double floating-point numbers.

Because XSLT uses optimistic recursion when trying
to find matching templates, it is the responsibility of
the programmer to make sure that templates will only
match where they are intended. Longer patterns are
more restrictive than shorter ones, but programs are
often written with short patterns. XSLT determines
which template matches based on whether the pat-
tern matches, the selectivity of the pattern, the mode
of the template, and the set of nodes that were se-
lected for matching. Templates can be imported from
various sources. Adding templates to an import file
could affect the output of programs. In addition, im-
ports can be nested, and imported templates have
a precedence scheme. Programmers must expend ef-
fort to maintain control over the power of templates
in nontrivial programs. Even so, XSLT processors give
XML programmers freedom from the drudgery of
SAX and DOM programming. XSLT programs work
very well with document-oriented XML documents
such as XHTML,4 but for program-to-program, data-
oriented operations, the potential for error and lack
of data typing is a concern.

IBM SYSTEMS JOURNAL, VOL 41, NO 4, 2002 FUNDERBURK, MALAIKA, AND REINWALD 643

XML Schema5 was developed to add data types to
XML and to provide better document validation than
DTDs.6 XML Schema is also important because DTDs
do not support XML Namespaces.7 Because XML
Namespaces are an integral part of the XSLT pro-
cessing model, XSLT processors typically did not val-

idate their input documents. XML Namespaces now
play a part in any new XML effort. XML Schema or
a suitable replacement is a necessity.

SOAP (Simple Object Access Protocol)8 is an XML
messaging format. It defines a simple standard en-
velope for messages, which can be used in a wide
variety of protocols. When combined with HTTP (Hy-
perText Transfer Protocol), it is lightweight and ac-
cessible, eliminating the difficulties that must be faced
when using other protocols.

At this time, we have XSLT processors running XSL
stylesheets, and handwritten DOM and SAX applica-
tions. The overall processing model is one where one
step processes a whole document and then dumps
the output document out to a file or sends it over
the wire to another step that processes the document
as input. Integrators and Webmasters use a variety
of small, single-function processors and APIs for in-
teracting between XML and databases, messaging sys-
tems, and Web servers.

What is the next advance in XML programming? It
is language. Language has been a factor in almost
every advance in software and data management.
Language attracts and draws in. The SQL (Structured
Query Language) is largely responsible for the re-
placement of hierarchical and navigational databases
by relational ones. Even in the face of greater ef-
ficiency and performance, on average, successful lan-
guages win over nonlanguage approaches. However,
language is only useful within the context of its envi-
ronment. Because of this, the next advance in XML
programming will be XML-related languages com-
bined with XML databases/data stores. Whereas
single-document, file-oriented, processors are use-
ful tools, an XML language is much more useful when

combined with a database—just as SQL is. Even at a
pragmatic level, combining the two affords better func-
tion, support, and performance. An XML-capable da-
tabase manager can become a central highway in the
next generation of XML programming. Capability will
be measured in terms of language.

Using relational data in a world of
hierarchical messages

The use or transmission of data in a system requires
representation of the data values and the semantic
relationships among the values. The modeling of se-
mantic relationships varies most among systems. In
addition to defining a way to model semantic rela-
tionships, most systems also require abiding by the
cardinality rules for storing data and maintaining a
semantic relationship.

In relational systems, data are separated according
to cardinalities and according to logical dependen-
cies (normalization). Separate tables are required
to store a single, but nontrivial, piece of knowledge.
Data in each table form regular records, called tuples,
that contain the same number of fields. Data in each
of the separate tables are correlated by column val-
ues that serve as keys. Key values may represent ac-
tual external data or be manufactured values solely
for the purpose of correlating tuples. The organi-
zation of related data into tables is dependent on
cardinalities in the following way.

1. Data that are one-to-one with respect to other
data can be stored in the same tuple.

2. Data that are one-to-zero with respect to other
data can be stored in the same tuple, with null
representing not-present. The data can be stored
in a separate table as well.

3. Data that are one-to-many with respect to other
data must be stored in a separate table.

4. Data that are many-to-many with respect to other
data must be stored in another table, and a cor-
respondence table must be created to record the
correspondence between the two tables by stor-
ing key pairs from the respective tables.

Simple relationships are maintained by storing data
in the same tuple. Complex relationships are main-
tained by using separate relations and keys. All the
data of a category (by cardinality or logical depen-
dence) are stored in the same table. This places in-
formation together that is unrelated, but which has
the same type and structure properties.

What is the
next advance

in XML programming?
It is language.

FUNDERBURK, MALAIKA, AND REINWALD IBM SYSTEMS JOURNAL, VOL 41, NO 4, 2002644

In the relational world, it is as easy to query all the
authors a book has as it is to query all the books an
author has written. The data objects and relation-
ships between data are in a separate domain of meta-
data, and such objects and relationships must be un-
derstood and materialized by an application. The
application does this by utilizing the correct table
names and by creating the appropriate “join” expres-
sions. Utilizing a set of tables at a server requires
too much involvement with the names and data de-
sign for a particular server. A table or set of tables
does not make a very appealing message format, be-
cause the data require too much correlation and in-
terpretation by the recipient.

In the XML-centric world, the parent/child element
and the element/attribute relationships are used to
encode semantic relationships. A specific document
must choose a specific hierarchy that models the re-
lationships that are meaningful in the specific com-
munication. Data cardinality also influences XML
schema design. Here are the most common gener-
alities for XML.

1. Data that are one-to-one with respect to other
data can be stored in attributes of an element or
descendant elements of the same element—ei-
ther as element content or in attributes.

2. Data that are one-to-zero with respect to other
data can be stored in the same way as the one-
to-one case, but the element or attribute housing
the data can be absent or the contents of the node
can be empty.

3. Data that are one-to-many with respect to other
data can be stored in repeating child elements of
the element representing the other data.

4. Data that are one-to-many with respect to other
data can be stored in child elements where data
are duplicated. Data can also be stored in sep-
arate hierarchies that are cross-linked by identi-
fiers, or some other application convention.

In the XML world, relationships are encoded within
the document itself by using parent/child relation-
ships and element/attribute relationships. Data that
are related are adjacent. Data appear when the data
are needed, and the structure varies accordingly. This
makes an XML document more self-contained and
requires less interpretation. The XML format does
have its downside. An XML document originates in
character form, is organized in a particular hierar-
chy that favors particular relationships, and may du-
plicate various facts. Because of this, the XML data

format is not desirable as a method of storing data
that need to be correlated with many other collec-
tions of data, in many relationships, or for storing
data that are updated.

Any system that provides many views of data in var-
ious relationships must be able to efficiently mate-
rialize results at run time. Typical queries form joins
and other various predicates and projections that
combine and form subsets from the data. Stored data
that support these kinds of queries must be readily
accessible, in a digested, typed format ready for com-
parison or computation. Such queries need the as-
sistance of indexes to perform well.

Thus, often the right way to store data is relational
but it is not the right way to encode messages. The
data manager must enable the creation of any ar-
bitrary number of specific mappings between rela-
tional data and XML, and make these mappings or
transformations invokeable by applications. Figure
1 depicts the structure of a database manager that
is designed to support both XML and relational re-
quests. SQL or XQuery requests are accepted, and
specific APIs can be chosen by the application to pro-
cess the result.

APPLICATION INTERFACE

SOAPDOMSAXJDBC STATIC SQLODBC

RELATIONAL
STORAGE WITH XML
COLUMN SUPPORT

SQL AND
SQL/XML
LANGUAGE

XQUERY
LANGUAGE

DATABASE
META-DATA,

XML
META-DATA,

DATABASE
CONFIGURATION

HTTP
OR

MSG
QUEUE

QUERY / TRANSFORMATON
PROCESSOR

TRANSACTION SUPPORT,
DATA MANAGEMENT

Figure 1 XML/relational database manager

IBM SYSTEMS JOURNAL, VOL 41, NO 4, 2002 FUNDERBURK, MALAIKA, AND REINWALD 645

SQL extensions for XML

In this section, we describe how traditional SQL ap-
plications can evolve to deal with XML data. Build-
ing on the relational data model with SQL and ex-
isting data access protocols, we introduce SQL
extensions for XML to construct XML data from re-
lational data, as well as store, query, and retrieve XML
data. Some of the SQL extensions described here are
provided by DB2* (Database 2*) XML Extender, some
are proposed for the ANSI/ISO (American National
Standards Institute/International Organization for
Standardization) SQL standard (SQL/XML),9,10 and
others are discussed in workgroups or exist in pro-
totype implementations. ANSI/ISO approved a proj-
ect for a new part of SQL:200n, part 14, XML-Related
Specifications (SQL/XML).

An informal group of companies, called SQLX (http:
//www.sqlx.org) including IBM, Microsoft, Oracle, and
Sybase began to define XML extensions for SQL in
early 2000. The group focuses on SQL capabilities
and consciously avoids vendor extensions while en-
couraging state-of-the-art and projected future de-
velopments. SQLX forwards proposals to the INCITS
(InterNational Committee for Information Technol-
ogy Standards) H2 Database Committee for approval.

IBM’s vendor extensions were incorporated in the lat-
est version of DB2 XML Extender. XML Extender adds
XML functionality to IBM DB2 databases through a
set of user-defined types, user-defined functions, and
stored procedures. This section is not intended to
compare SQL/XML with XML Extender. A compar-
ison would not be useful, because the current
SQL/XML proposal only contains the first phase of ex-
tensions, and more extensions are in preparation.
Both technologies are presented as partly overlap-
ping approaches with similar objectives. The line be-
tween SQL/XML and XML Extender is kept fuzzy
intentionally, with the projection that these technol-
ogies will merge in the course of time.

XML publishing functions. Relational data are the
universal backbone of any business. With XML as a
universal data exchange format, the capability of con-
structing XML data from existing relational data,
while preserving the power of SQL, tremendously sim-
plifies business-to-business (B2B) application devel-
opment. In this subsection, we introduce a list of sca-
lar and aggregate functions as SQL extensions:

● XMLElement and XMLAttributes: construct XML
elements with attributes

● XMLForest: constructs a sequence of XML ele-
ments

● XMLConcat: concatenates XML elements
● XMLAgg: aggregates XML elements
● XMLGen: constructs XML according to an XML el-

ement constructor specification

XMLElement constructs a new XML element with
attributes and content. The attribute names and val-
ues are specified in XMLAttributes through column
names or aliases for value expressions. Element con-
tent is constructed from a variable list of value ex-
pressions. The result of the value expressions is
mapped from SQL to XML according to the mapping
rules specified in SQL/XML.9 SQL/XML defines map-
ping rules to map SQL identifiers and XML identi-
fiers, SQL data types and XML schema types, and SQL
data and XML data on a value, table, schema, and
catalog level. An example for mapping an SQL table
to XML is discussed in the subsection, “Example
XQuery view.”

In a supply chain sample scenario, a company stores
orders and orderItems in relational tables. A business
partner posts through a secure Internet connection
a query to retrieve all open orders:

SELECT XMLELEMENT (
NAME “order”,
XMLATTRIBUTES (o.oid AS “id”),
XMLELEMENT (

NAME “signdate”,
o.contractdate

),
XMLELEMENT (

NAME “amount”,
(SELECT SUM(orderitem)
FROM orderItems AS oi
WHERE i.oid � o.oid)

)
)

FROM orders AS o
WHERE status � ‘open’;

The query returns a result set with two rows, with
each row containing an XML value:

�order id�“4711”�

�signdate�2002-03-18�/signdate�

�amount�24000�/amount�
�/order�

�order id�“4712”�

�signdate�2002-03-19�/signdate�

FUNDERBURK, MALAIKA, AND REINWALD IBM SYSTEMS JOURNAL, VOL 41, NO 4, 2002646

�amount�44000�/amount�
�/order�

XMLForest simplifies queries as it constructs se-
quences of XML elements from SQL value expressions
in the order of the expressions. XMLForest is a short-
hand for a sequence of XMLElement invocations.
XMLForest takes a variable list of SQL value expres-
sions as input, and produces for each expression an
XML Element with the column name or alias of the
expression as the tag name, and the value of the
expression as the element content.

SELECT XMLELEMENT (
NAME “order”,
XMLFOREST (

o.oid AS “id”,
o.name AS “name”,
o.city AS “city”

)
)

FROM orders AS o
WHERE status � ‘open’;

�order�
�id�4711�/id�

�name�steel company��/name�

�city�Hamburg�/city�

�/order�

�order�
�id�4712�/id�

�name�beer company�/name�

�city�Munich�/city�

�/order�

XMLConcat takes a variable number of XML value
expressions and constructs a single XML value as a
sequence of XML values. This function is used to con-
struct an XML element from pieces of independently
constructed XML. XMLConcat is a scalar function.
The following example produces the same output as
the previous example.

SELECT XMLELEMENT (
NAME “order”,
XMLCONCAT (

XMLELEMENT(
NAME “id”,
o.oid

),
XMLELEMENT(

NAME “name”,
o.name

),

XMLELEMENT(
NAME “city”,
o.city

),
)

)
FROM orders AS o
WHERE status � ‘open’;

XMLAgg is an aggregate function, which constructs
an XML value from a collection of XML value expres-
sions. XMLAgg resolves the 1:n relationships in XML.
The following example retrieves information about
an order including its orderItems.

SELECT XMLELEMENT(
NAME “order”,
XMLATTRIBUTES(o.oid AS “id”),
XMLAGG(

XMLELEMENT(
NAME “item”,
XMLATTRIBUTES(

oi.listnbr AS “listnbr”
),
XMLFOREST(

oi.name AS “name”,
oi.quantity AS “quantity”

)
)
ORDER BY oi.listnbr

)
)

FROM orders AS o, orderItems AS oi
WHERE o.oid � oi.oid
GROUP BY o.oid;

This query returns the result:

�order id�“4711”�

�item listnbr�“1”�

�name�bike�/name�

�quantity�10�/quantity�

�/item�

�item listnbr�“2”�

�name�racket�/name�

�quantity�5�/quantity�

�/item�

�/order�

Mapping relational data to XML in DAD description.
An alternative method for publishing XML docu-
ments from relational tables is through the DB2 XML
Extender Document Access Definition (DAD), which
itself is an XML document. The DB2 XML Extender11

IBM SYSTEMS JOURNAL, VOL 41, NO 4, 2002 FUNDERBURK, MALAIKA, AND REINWALD 647

is a component of DB2 that provides various forms
of XML support.

Two distinct notations can be used in DADs to de-
scribe how to map from relational tables to XML.

● SQL Composition: A notation that incorporates an
SQL SELECT statement, followed by instructions on
how the resulting rows should be tagged as XML

● RDB (relational database) Node: A notation that
includes a list of the tables whose contents are to
be tagged as XML, together with the primary-for-
eign key relationships between the tables. As in
SQL Composition, the list of tables is followed by
instructions on how the contents (or more typically
a subset of the contents) should be tagged as XML.

There are seven steps to consider when generating
a DAD for publishing.

1. Scoping the document content
2. Shaping the document structure
3. Mapping the relational content to the document
4. Controlling the number of documents generated
5. Outputting document header information
6. Validating the generated documents
7. Transforming the generated documents (e.g., to

HTML, HyperText Markup Language)

We describe in detail the steps required to produce
the following XML documents from relational data:

�order id�“4711”�

�signdate�2002-03-18�/signdate�

�amount�24000�/amount�
�/order�
�order id�“4712”�

�signdate�2002-03-19�/signdate�

�amount�44000�/amount�
�/order�

Scoping the content of the generated documents. The
first part of the SQL Composition DAD contains an
SQL SELECT statement that retrieves all the rows
whose content is required in the generated docu-
ment. The SQL statement can include join operations,
subselects and SQL functions. For example,

�SQL_stmt�
SELECT

o.oid AS id,
o.contractdate AS cdate,
SUM(oi.orderitem) AS total,

FROM orders AS o, orderItems AS oi

WHERE oi.oid � o.oid AND status � ‘open’
ORDER BY id;

�/SQL_stmt�

The first part of the RDB_node contains a list of ta-
bles whose rows form the content of the generated
document. The key relationships between the tables
are listed in the scoping portion of the DAD. For
example,

�RDB_node�

�table name�“orders” key�“oid”/�
�table name�“orderItems” key�“oid”/�
�condition�

orders.oid�orderItems.oid
�/condition�

�/RDB_node�

Another condition can be added to restrict the doc-
uments generated to those that have an ‘open’ sta-
tus by inserting the following check into the DAD:
�condition�status�‘open’�/condition�.

Shaping the structure of the generated documents. For
both the SQL Composition DAD and RDB Node DAD,
the shape of the output document is governed by the
structural tag layout in the second part of the DAD.
Multiple hierarchies can be generated in a single doc-
ument, and the way elements repeat can be con-
trolled. Following is an example for SQL Composi-
tion:

�root_node�

�element_node name�“order”�

�attribute_node name�“id”�

�column name�“id”/�
�/attribute_node�

�element_node name�“signdate”�

�text_node�

�column name�“cdate”/�
�/text_node�

�/element_node�

�element_node name�“amount”�

�text_node�

�column name�“total”/�
�/text_node�

�/element_node�

�/element_node�

�/root_node�

Mapping the relational content to XML. For both the
SQL Composition DAD and RDB Node DAD, the map-
ping is governed by instructions that appear along-
side the structural tags in the second part of the DAD.

FUNDERBURK, MALAIKA, AND REINWALD IBM SYSTEMS JOURNAL, VOL 41, NO 4, 2002648

The tag layout shown in the subsection on shaping,
above, represents the mapping information for the
SQL Composition example.

Controlling the number of documents generated. For
SQL Composition, the number of documents pro-
duced can be controlled by the SQL statement in the
DAD. The number of documents produced is equal
to the number of rows grouped by the first grouping
expression. For RDB_node, the number of documents
produced can be controlled by the options supplied
on the root element in the DAD. Suppose we wanted
to produce a single document as follows:

�orders�

�order id�“4711”�

�signdate�2002-03-18�/signdate�

�amount�24000�/amount�
�/order�

�order id�“4712”�

�signdate�2002-03-19�/signdate�

�amount�44000�/amount�
�/order�

�/orders�

For RDB Node notation, we would use the multi_oc-
currence option in the DAD to cause a single doc-
ument to be produced instead of two. Following is
an example of how the option is specified:

�element_node name�“orders”�

�element_node name�“order”
multi_occurrence�“yes”�

�attribute_node name�“id”�

�RDB_node�

�table name�“orders”/�
�column name�“oid”
type�“varchar(20)”/�

�/RDB_node�

�/attribute_node�

�/element_node�

�/element_node�

Outputting document header information. Header in-
formation such as XML declarations, DTD references,
and processing instructions can be generated through
the statements in the DAD. Following are some ex-
amples:

�prolog�?xml version�“1.0”?�/prolog�

�doctype�

!DOCTYPE Order SYSTEM “orders.dtd”
�/doctype�

Validating the generated documents. For both SQL
Composition and RDB Node, it is possible to vali-
date the generated documents against an XML
schema or a DTD. For XML document validation there
are three options.

1. Use the validation option in the DAD as follows:

�dtdid�order.dtd�/dtdid�

�validation�yes�/validation�

DB2 XML extender will perform the validation
against a DTD stored in the file system, or stored
in a special table called the DTD_REF table.

2. Use the dvalidate UDF (user-defined function) as
follows:

db2xml.dvalidate(doc, dtd)

3. For schema validation, the svalidate UDF is avail-
able as follows:

db2xml.svalidate(doc, xmlschema)

Transforming the generated documents. It is possible
to apply further transformations to the generated
documents, for example to convert them to HTML.
There are a number of ways to transform.

1. Place an XSL processing instruction in the header
information.

2. Use the XML Extender-supplied XSLT UDF, for
example XSLTransformToClob(xmldoc, stylesheet,
parameters, validate). A CLOB is a character large
object.

In this subsection, we have seen DAD fragments only.
Following is a complete SQL Composition DAD:

�?xml version�“1.0”?�

�!DOCTYPE DAD SYSTEM “dad.dtd”�

�DAD�

�validation�no�/validation�

�Xcollection�

�SQL_stmt�
SELECT

o.oid AS id,
o.contractdate AS cdate,
SUM(oi.orderitem) AS total,

FROM orders AS o, orderItems AS oi
WHERE oi.oid � o.oid AND status � ‘open’
ORDER BY id;

IBM SYSTEMS JOURNAL, VOL 41, NO 4, 2002 FUNDERBURK, MALAIKA, AND REINWALD 649

�/SQL_stmt�
�prolog�?xml version�“1.0”?�/prolog�

�doctype�

!DOCTYPE Order SYSTEM “orders.dtd”
�/doctype�

�root_node�

�element_node name�“order”�

�attribute_node name�“id”�

�column name�“id”/�
�/attribute_node�

�element_node name�“signdate”�

�text_node�

�column name�“cdate”/�
�/text_node�

�/element_node�

�element_node name�“amount”�

�text_node�

�column name�“total”/�
�/text_node�

�/element_node�

�/element_node�

�/root_node�

�/Xcollection�

�/DAD�

Publishing XML documents from a DAD. Having cre-
ated a DAD, using a text or XML editor, or through
the WebSphere* Studio application development
family of tools,12 it is necessary to invoke a
DB2-supplied stored procedure to produce one or
more XML documents. The stored procedures, which
are a component of the DB2 XML Extender,11 make
it possible to select whether:

● The generated documents are placed in permanent
tables, temporary tables, WebSphere MQ queues,
or in memory.

● The generated documents should be validated.
● A maximum limit should be set on the number of

documents produced.
● The content of the DAD should be overridden.

Following is an example of a stored procedure in-
vocation to generate XML documents from a DAD:

EXEC SQL CALL dxxGenXML(
:orderdad:orderdad_ind;
:result_tab:rtab_ind,
:result_colname:rescol_ind,
:valid_colname:val_ind,
:overrideType:ovtype_ind,:override:ov_ind,
:max_row:maxrow_ind,:num_row:numrow_ind,

:returnCode:returnCode_ind,
:returnMsg:returnMsg_ind

);

where the input parameters are:

● orderdad: contains the DAD
● result_tab: contains the name of a table where the

documents to be published (in result_colname) are
placed together with an indication (in valid_colname)
for each document whether it is valid or not (if val-
idation was requested in the supplied DAD)

● overrideType: contains an indication of the type of
scoping override to be supplied in this request.
There are three possible values: (1) SQL override:
to override the SQL statement in a SQL composi-
tion DAD, (2) location path restrictions (an XPath
subset): to override the values included in
RDB_node-generated documents, and (3) no over-
ride.

● override: contains either one SQL statement or a se-
ries of location path restrictions

● max_row: the maximum number of rows to be re-
turned.

The main output parameters are the actual number
of rows returned, and the result table populated with
documents and validation indicators.

DB2 supplies a number of stored procedures for doc-
ument generation. Table 1 shows the major stored
procedures.

Storing XML in the database. SQL provides exten-
sibility features such as UDTs (user-defined types) and
UDFs to extend the system. DB2 XML Extender pro-
vides a character-based UDT for XML, and a collec-
tion of UDFs to operate on XML. SQL extensions are
proposed for SQL/XML with a built-in XML SQL data
type.9 The SQL/XML data type is more generic (flex-
ible) and provides XML-specific functionality, rather
than the XML extender data types that are built us-
ing the SQL UDT and character data type function-
ality.

For example, an application can create a table “or-
ders” with a column “purchaseOrder” of data type
XML with the request:

create table orders (oid integer,
customer varchar(20), purchaseOrder XML);

An SQL INSERT request is used to store an XML pur-
chase order document in the table. XMLParse is used

FUNDERBURK, MALAIKA, AND REINWALD IBM SYSTEMS JOURNAL, VOL 41, NO 4, 2002650

to “cast” an XML character string to an instance of
the XML data type. An explicit XMLParse is intro-
duced as opposed to using cast syntax, as additional
parameters for whitespace handling or other options
might be provided. Furthermore, XMLParse per-
forms much more than just switching a type indica-
tor. It might be an expensive operation to check for
well-formedness of the document.

INSERT INTO orders
values (1000, ‘Steel Inc.’, XMLParse(‘�?xml

version��purchaseOrder� . . . �/purchaseOrder�’);

An additional function, XMLValidate, is being de-
fined to perform XML Schema validation on an XML
instance.

Retrieving an XML instance requires serialization of
the XML instance into a particular format and en-
coding. XMLSerialize provides options to deal with
data type issues, encoding, and so on.

SELECT XMLSerialize(purchaseOrder)
FROM orders
WHERE oid � 1000;

XMLSerialize produces a character string (CHAR,
VARCHAR, or CLOB) on the database server side. Be-
sides XMLSerialize, host language mapping rules will
be defined to retrieve XML values into a client ap-
plication as serialized XML or even a DOM document.

The DB2 XML Extender11 provides two ways of stor-
ing XML data in DB2:

● XML Column: where the XML data are stored in-
tact with optional hierarchical indexes for speedy
search

● XML Collection: where the data are shredded into
relational form and the tags are removed. XML Col-
lections are sets of relational columns (whose data
contain no XML tags) within one or more relational
tables that can be composed into XML documents
or processed in a routine way by regular relational
tools and applications.

In the previous subsection, a DAD was used to map
from relational data to XML data when publishing
XML documents from traditional relational database
content. In this subsection, we illustrate that the DAD
also maps from XML data to relational data when
storing XML data in DB2.

In the case of XML Column, the DAD defines the in-
dexes (known as side tables) that DB2 builds and
maintains, as documents are inserted and modified
by DB2 XML Extender. Location path notation, a re-
stricted form of XPath, is used in the DAD to specify
the portions of the document that are to be indexed.

In the case of XML Collection, the DAD defines the
mapping between XML content (elements and at-
tribute values) and relational columns across many
tables. As documents are shredded or are generated,
DB2 consults the relevant DADs to determine how to
proceed.

XML column storage. Intact XML documents, incor-
porating all the tags, can be stored in three user-de-
fined types in relational tables:

1. XMLVarchar: documents stored in DB2 and up to
3K in length

2. XMLCLOB: stored in DB2 and up to 32K in length
3. XMLFILE: documents stored in the local file sys-

tem

Table 1 DB2 stored procedures for document generation

Publishing Stored
Proc Name

Features

dxxGenXML� Documents are placed in a permanent or temporary table.
dxxRetrieveXML� The name associated with the DAD (known as a collection name) is

supplied as input instead of the DAD itself.

dxxmqGen� Documents are placed in or retrieved from a WebSphere MQ queue.
dxxmqRetrieve�

dxxGenXMLClob� One document is placed in or retrieved from an output parameter clob.
dxxRetrieveXMLClob�

dxxmqGenClob� One document is placed in or retrieved from a WebSphere MQ queue.
dxxmqRetrieveClob�

IBM SYSTEMS JOURNAL, VOL 41, NO 4, 2002 FUNDERBURK, MALAIKA, AND REINWALD 651

In all three cases, as XML documents are inserted
through SQL INSERT requests, indexing tables known
as side tables are built in accordance with an XML
Column DAD.

To index the “id” attribute in the following docu-
ment:

�order id�“4711”�

�SIGNDATE�2002-03-18�/SIGNDATE�

�AMOUNT�24000�/AMOUNT�

�/order�

The following XML column DAD could be used:

�?xml version�“1.0”?�

�!DOCTYPE DAD SYSTEM “dad.dtd”�

�DAD�

�dtdid�order.dtd�/dtdid�

�validation�yes�/validation�

�Xcolumn�

�table name�“order_side_tab”�

�column name�“order_key”
type�“integer”
path�“/Order/@id”
multi_occurrence�“no”/�

�/table�

�/Xcolumn�

�/DAD�

The path�“/Order/@id” option indicates the name of
the attribute to be indexed in a side table. The op-
tion multi_occurrence�“no” indicates that the order, and
hence its attribute called id, will appear at most once
in each document.

Multiple single occurrence element or attribute val-
ues can be placed in one side table. Each time an
intact XML order document is inserted into an
XML Column, DB2 inserts one row into the table
order_side_tab. The row in order_side_tab represents the
order. For speedy access, the row in order_side_tab in-
cludes the key of the row that contains the intact XML
order. DB2 creates a default relational view that in-
corporates the side tables and the table containing
the XML column. The view provides a simple inter-
face to retrieve the intact documents programmat-
ically by content, in an efficient and simple way, with-
out requiring XML parsing.

Consider storing the following document, that con-
tains multiple orders, in an XML column:

�orders�

�order id�“4711”�

�signdate�

2002-03-18
�/signdate�

�amount�
24000

�/amount�
�/order�
�order id�“4712”�

�signdate�

2002-03-19
�/signdate�

�amount�
44000

�/amount�
�/order�

�/orders�

We would adapt the DAD as follows:

�Xcolumn�

�table name�“order_side_multitab”�

�column name�“order_key”
type�“integer”
path�“orders/order/@id”
multi_occurrence�“yes”/�

�/table�

�/Xcolumn�

Each time an orders document is inserted, DB2 inserts
multiple rows into the table order_side_multitab, each
of which includes the key of the row containing the
intact XML orders document. Each row in the side
table represents a single order.

When XML documents are inserted into XML col-
umns, they can be validated against XML schemas or
DTDs through the svalidate and dvalidate functions men-
tioned in the previous section. Alternatively, they can
be validated on insertion by specifying validation yes
in the XML Column DAD, as illustrated previously.

XML Collection storage. The following SQL request
shreds XML data into relational form:

EXEC SQL CALL
DB2XML.dxxShredXML(:dad:dad_ind;

:xmlDoc:xmlDoc_ind,
:returnCode:returnCode_ind,
:returnMsg:returnMsg_ind);

Stored procedures for shredding are described in Ta-
ble 2.

FUNDERBURK, MALAIKA, AND REINWALD IBM SYSTEMS JOURNAL, VOL 41, NO 4, 2002652

XML storage guidelines. With the DB2 XML Extender,
where data content is updated often and speedy per-
formance of updates is very important, we recom-
mend XML Collection as the storage method. XML
Collection also makes it possible to apply analytical
tools for relational data to the XML content. Where
it is desired to view documents precisely as they were
on input to the system, and document updates are
not frequent, we recommend XML Column, which
also provides fast search capability. Often, docu-
ments are stored in XML Column for nonrepudia-
tion purposes.

Some applications use a combination of XML Col-
lection and XML Column. For example, an insurance
claims system may store and index the claims in the
form in which they were input to the system, for easy
subsequent access. The claims may also be shred-
ded into XML Collections to drive a claims process-
ing system.

Working with XML data in SQL. Using XML data in
SQL requires the ability to search, update, extract,
and shred XML data. SQL by itself is not sufficient to
perform these operations, as it does not provide lan-
guage to navigate and traverse XML data. Operating
on XML values requires an XML query language such
as XPath and/or XQuery. In this subsection we de-
scribe SQL extensions for XML to provide means to
search, update, extract, and shred XML in the con-
text of SQL. Some functions are currently discussed
in SQLX as a potential proposal for SQL/XML, some
functions are implemented in DB2 XML Extender, and
others are implemented in various prototypes. The
functions are discussed here from the perspective of

application requirements without addressing their
current status.

XMLExists is a Boolean function, which evaluates
an XPath expression on an XML value. If XPath re-
turns a nonempty sequence of nodes, then XMLEx-
ists is true, otherwise it is false. XMLExtract returns
the result of the XPath query as an XML instance.
The following sample query returns all customers and
dates of orders that include a shoe item:

SELECT customer,
XMLExtract(

purchaseOrder,‘/purchaseOrder/@orderdate’
)

FROM orders
WHERE

XMLExists(
purchaseOrder,
‘/purchaseOrder[list/item/desc/text��“Shoes”]’

)�1;

XMLUpdate modifies fragments in an XML value.
It takes three arguments as input. XMLUpdate op-
erates on an XML value (first argument), locates XML
fragments in the XML value using an XPath expres-
sion (second argument), replaces the identified XML
fragments with an updated XML fragment (third ar-
gument), and finally returns the new XML value. The
following example updates the customer name in or-
der XML documents to ‘IBM’, where the salesperson
is ‘John Doe’.

update sales_tab
set order � XMLUpdate(order,

Table 2 Stored procedures for shredding

Shredding
Stored Proc

Name

Features

dxxShredXML� A document is shredded into many rows in many tables.
dxxInsertXML� The name associated with the DAD (known as a collection name)

is supplied as input instead of the DAD itself.

dxxmqShred()
dxxmqShredall()
dxxmqInsert()
dxxmqInsertall()

These are similar to the stored procedures in the row above,
except that they shred documents held in WebSphere MQ queues
into DB2 tables. dxxmqShredall() and dxxmqInsertall shred all
the documents in a queue whereas dxxmqShred and dxxmqInsert
shred the first document only.

dxxmqShredCLOB()
dxxmqShredAllCLOB()
dxxmqInsertCLOB()

These are similar to the stored procedures in the row above,
except that they shred large documents held in WebSphere MQ
queues into DB2 tables.

IBM SYSTEMS JOURNAL, VOL 41, NO 4, 2002 FUNDERBURK, MALAIKA, AND REINWALD 653

‘/order/customer/name’,
XMLParse(‘�Name�IBM�/Name�’))

where sales_person � ‘John Doe’

Shredding of XML takes an XML value as input and
returns a derived table with columns containing ex-
tracted values. The extracted values are specified
through XPath expressions. A context XPath expres-
sion provides the set of values. For example, an XML
value may contain a list of items. The context XPath
expression navigates to each item, produces a row,
and additional XPath expressions operate on each
item to retrieve column values for the rows. A ge-
neric function XMLTable, takes as input an XML
value, an XPath expression for the context, and N
XPath expressions to return N column values. The
following example query takes an XML value with an
item list as input. The context XPath expression
‘/items’ produces a row per item in this list, and the
column XPath expressions ‘./item/@id’ and ‘./item/@desc’
return column values for item id and item descrip-
tion.

select *
from table (XMLTable(:item list, ‘/items’,

‘./item/@id’, ‘./item/@desc’))
As T (id integer , desc varchar(10))

The resulting table is:

ID DESC

23 Shoes
25 Bungee Ropes

Manipulating XML column content through the DB2
XML extender. DB2 XML Extender provides over one
hundred SQL functions that can be used to manip-
ulate XML stored in tables, in memory, in the file sys-
tem, in WebSphere MQ, or generated through doc-
ument publishing via the DAD. We highlight just
some of the functions and their features. Of course,
all of these functions can be used in conjunction with
sophisticated SQL requests. Table 3 describes the
families of SQL functions available in DB2 XML Ex-
tender.

Other XML Extender features. The DB2 XML Ex-
tender provides optional validation support against
DTDs and XML schemas. The validation can take
place prior to storing or shredding the XML docu-
ment into DB2, or after retrieving, extracting, or gen-
erating XML documents from DB2. In addition, it is
possible to store and manage DADs and DTDs in DB2
tables. In the future, integration with an XML repos-
itory will be provided, so that XML meta-data can be
managed in a very general way.

The DB2 XML Extender helps integrate data XML data
stored in the file system and in WebSphere MQ with
relational data. For example, it is possible to remove
a number of items from a WebSphere MQ queue and
shred them into relational data, all through a single
SQL request.

Figure 2 depicts the components used in implement-
ing the XML data integration functions we have pre-
sented for DB2 XML Extender.

Table 3 DB2 XML Extender SQL function descriptions

XML Extender SQL Function
Family

Features

Validation Enable the validation of XML documents against schemas and DTDs

Transformation Enable the transformation of XML documents through XSL
transformations

Import Enable importing XML documents from a file system into DB2

Export Enable exporting XML documents from a file system into DB2

Extract document fragment Enable the extraction of one or more well formed document
fragments from a document by specifying a location path

Extract element & attribute values Enable the extraction of one or more well element or attribute values
from a document by specifying a location path

Update Enable the modification of element or attribute values in a document
by specifying a location path

FUNDERBURK, MALAIKA, AND REINWALD IBM SYSTEMS JOURNAL, VOL 41, NO 4, 2002654

XQuery

XQuery is a functional expression language that can
be used to query or process XML data or any data
that can be represented within the same model as
XML. Being purely an expression language, XQuery
programs are easier to understand and maintain than
XSLT, because they do not include the complexities
or management of templates (rule-based system).
This is especially true for highly structured data, and
for longer programs. XQuery will still be able to ef-
fectively process semi-structured data. The query lan-
guage is small and powerful. It has both an easy, hu-
man-readable form and an XML representation. The
XQuery language is an activity of the W3C (World
Wide Web Consortium). Several publicly available
working drafts have been published.13

XQuery as the next XML programming language.
XQuery can become the next XML programming lan-
guage. XQuery provides needed concepts, upgraded
functionality, and new ideas that will fundamentally
change the way XML applications are designed and
implemented.

XQuery supports XML data typing using XML Schema
as a base, but will also be able to process documents
without type information. XQuery includes an up-

graded version of XPath whose semantics mesh bet-
ter with typed data. XQuery provides a powerful
FLWR (for, let, where, return) statement that allows
joins to be expressed. XQuery also allows the user
to construct sequences of items in a given order and
to perform arbitrary sorts on any generated se-
quence. New elements, sequences, and XML data
fragments can be formed. The result of expressions
can form the output of queries, or as a subexpres-
sion, form a temporary data structure that can itself
be queried. Variables can be bound to the result of
an expression and utilized in multiple places. Var-
iables are not declared with a specific type, but in-
stead take on the type of the expression they are
bound to. XQuery includes a type-switch expression
that allows programs to test an expression for being
a particular type and to form a result based on this
test. XQuery has the usual programming constructs,
such as if-then-else and arithmetic, Boolean, and
comparison operations.

The XQuery language allows one to define functions
and invoke them. These functions can be local func-
tions to the query, allowing one to organize one’s
query in smaller, more understandable fragments.
Local functions do not have to be defined to the da-
tabase system. Some XQuery processors may allow

DB2 XML
COLLECTION

DB2 XML
COLUMN

XML DOCUMENTS
IN THE FILE SYSTEM

XML DOCUMENTS
IN MQ SERIES

XML DOCUMENTS
IN MEMORY

XML DOCUMENT
DECOMPOSITION

XML DOCUMENT
COMPOSITION

EXTRACT XML
DOCUMENT FRAGMENTS

EXTRACT XML
STRINGS

UPDATE DOCUMENT
CONTENT

IMPORT AND EXPORT
DOCUMENTS

SEARCH FOR
DOCUMENTS

DB2 XML
APPLICATION

Figure 2 XML integration with DB2

IBM SYSTEMS JOURNAL, VOL 41, NO 4, 2002 FUNDERBURK, MALAIKA, AND REINWALD 655

function libraries to be defined and then accessed
in queries. The XQuery language defines an exten-
sive built-in function library. Besides mathematical
functions, operations on nodes such as deep-equal,
filter, and various functions on sequences will give
programmers a wide and detailed level of control
over expressions. These features allow XQuery pro-
grams to be longer and more understandable than
programs in most query languages.

The effective XML programming paradigm involves
data transformation, transactions, work flows and
messaging. The XQuery 1.0 draft definition covers
the core topic of data transformation.

The data manager as the XQuery view processor.
The most fundamental requirement for a database
manager that supports XML applications is that it
must be able to form an XML result. The most nat-
ural approach to do this is for the database manager
to support XQuery. This makes human or program-
matic interaction with data consistent with the XML
model and eliminates the need to straddle multiple
paradigms such as SQL, XPath, and potentially
SAX/DOM/XSLT in the same application (along with
their individual programming interfaces and proto-
cols).

XQuery operates on an XML data model, so in or-
der for XQuery to be able to process relational data,
stored tables, and columns, an extension mechanism
is needed. The extension mechanism can simply pro-
vide a simplistic view of a table as XML (actually an
instance of the XQuery data model). In XQuery, the
way to accomplish this is to invoke a special func-
tion that returns an XML document with a format
such as the following:

�table-name�

�row�

�column1-name� data �/column1-name�

�column2-name� data �/column2-name�

�column3-name� data �/column3-name�

�/row�

�row�

�column1-name� data �/column1-name�

�column2-name� data �/column2-name�

�column3-name� data �/column3-name�

�/row�
. . .

�/table-name�

The concept of the default view can be applied to
any table, view, database or even arbitrary SQL que-
ries.

The view provides the XQuery programmer the raw
material to form hierarchic results. There are sev-
eral proposals for simplistic (sometimes called “de-
fault”) XML representations of relational tables.
These views can span the entire database, whereas
others represent only a particular table. The process
of standardizing formats is a work in progress, but
emerging XQuery processors can easily provide a
reasonable extension function providing the required
functionality until such standards are in place.
SQL/XML is an example of a standardization effort
that defines XML views of relational data.

An application could simply request the entire de-
fault view and send it to an outside processor such
as XSLT to form the desired result. The use of XSLT
would be a needed step because the default view is
almost never the desired input or output of an ap-
plication. Using XSLT would eliminate the need for
the database to support XQuery, but this approach
is wrong for obvious reasons: XML views of entire
tables must be exported to the application. XSLT must
accept the transformation request, then receive po-
tentially multiple default view documents, and then
perform the needed joins. XPath does not naturally
express joins, and processors like XSLT are likely to
be highly inefficient at processing them.

XQuery should be implemented at the database so
that data can be selected (predicated), projected, and
joined efficiently within the database process. The
database manager also provides highly optimized fa-
cilities such as sorts, and resources such as charac-
ter collation sequences to support the XQuery re-
quests. Since XQuery has the ability to construct new
result node hierarchies based on the input data, the
desired output format, matching the desired XML
schema, can be generated. The database can utilize
information about the data and various indexes to
efficiently process the query and send a single result
document back as a result.

All applications could access default views and form
output documents, but this approach would still lead
to difficulties. Applications would have to become
involved with table and column names and the re-
lationships between the tables in order to form the
join conditions needed in forming the required out-
put hierarchies. These expressions often become
complex for nontrivial documents. A standard B2B

FUNDERBURK, MALAIKA, AND REINWALD IBM SYSTEMS JOURNAL, VOL 41, NO 4, 2002656

purchase order would be an example. In order to iso-
late applications and other requestors, the XML da-
tabase administrator should be able to create XML
views of relational data and define them using
XQuery. Applications and other requestors would
only need to issue an XQuery request in relation to
a provided XML view.

One fundamental way to think about XQuery views
is a publishing paradigm. XML database administra-
tors talk with application developers and content pro-
viders about the required schemas and hierarchies.
The database administrator creates XML views that
support the required XML hierarchies including hi-
erarchies required by direct user interaction and
those required by applications. The database admin-
istrator is free to adjust table and column definitions
and storage structures while providing the same view.
The schema of the view can also be published, and
applications, users, and tools can use that informa-
tion to formulate queries against the view itself.

Because the database query processor references
data in aggregate, queries against views should be
composed internally during optimization of the query
so the total cost of performing the query can be min-
imized, just as SQL databases optimize queries with
reference to views. This prevents the internal ma-
terialization of the view. Applications requiring only
small results from large data stores are sent only
small amounts of data from an optimized query that
is executed at the server. Client, network, and server
resources are conserved. Applications requiring large
results benefit from the optimized queries and from
disk buffering and streaming technologies that the
data manager can provide.

By using the XQuery expression language, request-
ors can provide all the required predicates, joins,
unions, and other expressions needed to form the
desired result. This is much more flexible than, say,
a set of remote procedures each with a fixed set of
parameters that produce particular XML results. In
such a system, a procedure has to be developed for
each output requirement, or the requestor must ac-
cept intermediate results and then use another pro-
cessor (XSLT) against potentially many streams to for-
mulate the desired result.

The idea is to publish a relatively small set of useful
views, such as a list of books organized by author
and books organized by subject, or purchase orders
and requisitions. A user chooses the most applica-
ble view and operates XQuery against it, providing

the additional constraints to formulate the desired
result. As a result, the XML database administrator
is relieved from the details of every application/user,
and the application/user does not need to know the
keys and join conditions to formulate results from
the schema and correlate them hierarchically.

The use of views also isolates the user from the ex-
tension mechanism used to access relational data.
One does not need to know the various default view
formats, how they might evolve into standardized
forms, or any special language extensions that apply
to the database. The user sees only a pure XML view
of hierarchical data.

The XQuery view mechanism also avoids separate
and proprietary mapping languages and files. Be-
cause the view mechanism uses XQuery itself, there

is a seamless integration and a lack of limitations as-
sociated with creating mappings, querying mappings,
or using multiple mappings in the same query. Dif-
ferent technologies do not need to be learned. Views
can be prototyped as queries. With sufficient author-
ity to access tables, any query can be executed with-
out the administrator forming a mapping.

Views have been used for years in relational systems,
but XML views have greater applicability because it
makes sense to encode a great deal more informa-
tion in a hierarchy than in a single row. This is be-
cause all the required data and the relationships
within the data are self-contained as a single unit,
rather than spread across several tables or views.

All XML technologies used by applications, includ-
ing XML languages such as XPath, XSLT, and XML
application interfaces, are best at processing data
whose hierarchical structure provides useful and se-
mantic relationships in the context of the specific ap-
plication. XML documents and messages will be de-
signed with this in mind. Therefore, data stores have
the need to materialize hierarchical information in
various formats using the same base data. The use
of XQuery views provides a clean, simple, and pow-
erful way to solve this problem. Applications are

XQuery is the way
to process and formulate

XML data models.

IBM SYSTEMS JOURNAL, VOL 41, NO 4, 2002 FUNDERBURK, MALAIKA, AND REINWALD 657

made simpler by performing a single XQuery request
over these views and receiving satisfactory results in
one step.

Highly operational data are normalized and are
stored in most systems using the relational model.
Selecting, forming, and correlating data hierarchies
efficiently is best performed by the data store, be-
cause it has the resources available to perform the
requests and will incur the least cost in processing
the requests.

Example XQuery view. Table 4 depicts an example
scenario in which four database tables are used to
represent simplistic purchase orders. A simple query
over the default view for customers would be:

table(“Customer”)

The query would return a document with the fol-
lowing structure:

�Customer�
�row�

�customer_id�777�/customer_id�

�name�William P Barnes�/name�

�address�104 West Avery Lane, CA�/address�

�/row�

�row�

�customer_id�888�/customer_id�

�name�Shirley Jackson�/name�

�address�1344 Pennsylvania Ave, OH�/address�

�/row�

�/Customer�

XQuery can transform the default view into a more
logical document:

�customerList�{
for $c in table(“Customer”)/Customer/row
return
�customer id�“{ $c/customer_id }”�

�name�{ data($c/name) }�/name�

�address�{ data($c/address) }�/address�

�/customer�
}�/customerList�

The output no longer simply exposes underlying ta-
ble and column names but instead structures the data
with the desired names and hierarchy. Both subtle
and dramatic changes are easily accomplished.

�customerList�
�customer id�“777”�

�name�William P Barnes�/name�

�address�

104 West Avery Lane, CA
�/address�

Table 4 Example of purchase order tables

Order Table
order_id customer_id ship_method date status

100 777 UPS 1999-10-23 shipped
101 777 USPS 2002-01-25 accepted
102 888 UPS 2002-02-05 shipped

Order_Items Table
order_id item_number product_id quantity price

100 1 1001 1 108.25
100 2 1002 2 17.42
101 1 1002 5 17.42
102 1 1003 1 104.10

Product Table
product_id description stock price

1001 Sound Blaster Audigy MP3� 1 108.25
1002 Travel Alarm With Radio 1 17.42
1003 5.1 Surround Sound Speaker System 1 104.10

Customer Table
customer_id name address

777 William P Barnes 104 West Avery Lane, CA
888 Shirley Jackson 1344 Pennsylvania Ave, OH

FUNDERBURK, MALAIKA, AND REINWALD IBM SYSTEMS JOURNAL, VOL 41, NO 4, 2002658

�/customer�
�customer id�“888”�

�name�Shirley Jackson�/name�

�address�

1344 Pennsylvania Ave, OH
�/address�

�/customer�
�/customerList�

Now, an XQuery view to materialize the entire pur-
chase order is seen in Figure 3.

The “orders” XML view constructs an “orders” tag
that contains all the orders in the system. The or-
ders tag contains the order id, date and shipping in-
formation, a customer information hierarchy, and
the items in the purchase order. Here we can see
more name changes.

The following query over the orders view returns a
single order:

view(“orders”)/orders/order[order_id � 100]

SCHEME 7

<orders>{

 for $o in table(“Order”)/Order/row return
 <order>{

 <order_id>{ data($o/order_id) }</order_id>,
 <date>{ data($o/date) }</date>,
 <ship_by>{ data($o/ship_method) }</ship_by>,
 <status>{ data($o/status) }</status>

 for $c in table(“Customer”)/Customer/row
 where $c/customer_id=$o/customer_id return
 <customer id =“{ data($c/customer_id) }”>
 <name>{ data($c/name) }</name>
 <address>{ data($c/address) }</address>
 </customer>,

 <items>{
 for $i in table (“Order_Items”)/Order_Items/row,
 $p in table(“Product”)/Product/row
 where $i/order_id = $o/order_id and
 $p/product_id = $i/product_id
 return <item>
 <item_no>{ data($i/item_number)}</item_no>
 <item_desc>{ data($p/description) }</item_desc>
 <item_qty>{ data($i/quantity) }</item_qty>
 <item_price>{ data($i/price) }</item_price>
 </item>
 sortby (item_no)
 }</items>

 }</order>

}</orders>

Figure 3 XQuery view for purchase order example

create view orders as

IBM SYSTEMS JOURNAL, VOL 41, NO 4, 2002 FUNDERBURK, MALAIKA, AND REINWALD 659

The document returned by this example is:

�order�
�order_id�100�/order_id�

�date�1999-10-23�/date�

�ship_by�UPS�/ship_by�

�status�shipped�/status�

�customer id�‘777’�
�name�William P Barnes�/name�

�address�104 West Avery Lane, CA
�/address�

�/customer�
�items�

�item�

�item_no�1�/item_no�

�item_desc�Sound Blaster Audigy MP3�

�/item_desc�

�item_qty�1�/item_qty�

�item_price�108.25�/item_price�

�/item�

�item�

�item_no�2�/item_no�

�item_desc�Travel Alarm With Radio
�/item_desc�

�item_qty�1�/item_qty�

�item_price�17.42�/item_price�

�/item�

�/items�

�/order�

An application query over the view produces:

�summary�{
view (“order_summary”)/ order_summary/order

[@custld � 777]
}�/summary�

�summary�

�order custld � “777”�

�order_id�100�/order_id�

�date�1999-10-23�/date�

�status�shipped�/status�

�/order�
�order custld � “777”�

�order_id�101�/order_id�

�date�2002-01-25�/date�

�status�accepted�/status�

�/order�
�/summary�

When views are accessed, they can be composed with
views they reference, making the previous view equiv-
alent to:

�order_summary�{
for $o in table(“Order”)/Order/row return
�order custld � “{$o/customer_id}”�{

�order_id�

{ data ($o/order_id) }
�/order_id�

�date�

{ data($o/date) }
�/date�

�status�

{data($o/ship_method) }
�/status�

}�/order�
}�/order_summary�

Composed views can be cached, allowing views to
be created against other views with minimal impact.
Views do not need to be formed against the default
view for efficiency.

Integration with novel storage structures and fed-
eration. Highly operational data are data that are
used as search and join conditions, in calculations,
are updated, or control the behavior of programs.
This kind of data is probably best stored using ma-
ture relational mechanisms. However, not all data
are highly operational and not all data fit well in the
relational model. Data can be historical in nature,
such as billing records. Some data may be read but
almost never written. Some documents are usually
retrieved as a complete unit. In this arena, search-
ing, retrieval, and preservation of the original doc-
ument structure are the significant operations. Cat-
aloging and attaching external information to intact
documents is often a requirement. Versioning may
be more important than updating. Other kinds of
data may involve documents whose structure evolves
over time, such as survey forms. Data may also be
sparse, such as a catalog of diverse products each
with different sets of attributes that can be queried.

Because the relational model is often out of sync with
the practicalities of nontraditional data, databases
may be enhanced with novel data storage structures.
Some of these can be: the ability to store documents
in full, the ability to form collections of documents,
specialized indexes on XML documents, or XML-
aware text search indexes capable of handling semi-
structured sections of an XML document. The data-
base may also support storage structures that main-
tain user-defined data cataloging functions.

One problem with storing operational data in XML
documents is that XML must form trees. Data lower

FUNDERBURK, MALAIKA, AND REINWALD IBM SYSTEMS JOURNAL, VOL 41, NO 4, 2002660

in the hierarchy can often be duplicated, and this
presents a problem for efficient storage, buffering of
data used to increase performance, and maintenance
of consistency when updating. To solve this prob-
lem, databases may allow optimized storage of XML
fragments. Such fragments can be normalized and
indexed. The fragments would be able to be accessed
and joined efficiently with other fragments to form
complete documents. Here, the ability to create views
is important.

As the market demand grows, these new features will
emerge from database providers. Specialized serv-
ers and data storage techniques are applied to ad-
dress the critical aspects, the heavy, day-to-day pro-
cesses of the data. However, it is important to realize
that data are never utilized for a single purpose.
Eventually we need all data to be integrated. Data
must be cataloged and summarized for intelligence
reasons. In large corporate data environments, data
in one system are often the source of messages or
updates that need to be applied to other systems.

When differing storage and indexing schemes exist,
there is a need to tie them together. The common
ground is XML and its flexible data model. XQuery
is the way to process and formulate XML data mod-
els. Using the database as the processor will make
it possible to efficiently integrate a variety of storage
structures and processing models. It is also possible for
the data manager to tie in existing federated support
in order to further increase the ability to integrate
and manipulate various kinds and sources of data.

B2B or scientific intelligence applications may require
aggregations of data to be readily available. The da-
tabase can form these results and they can be stored,
or these computations can be specified in views. The
data manager can cache view results according to
specified policy. In addition, functions to help gen-
erate these kinds of queries can be added to the
XQuery language by use of extension function librar-
ies.

Special features for XQuery. A number of special
features can be added to the database XQuery pro-
cessor that will make it different than other query
languages.

A default view can be generated across the entire
database. If this is supported, seamless queries
against meta-data and data will be possible. For ex-
ample, one can ask for all the tables that have a col-
umn named salary and have a value larger than

10000. XML query languages naturally query across
meta-data (tags) and data (node values). Exposing
any XML view affords this ability. As more data are
placed in the view, the queries can become more
powerful and abstract. For example, a view could also
expose type, ownership, and data cataloging infor-
mation as well as data values.

The XQuery processor can be enhanced with higher
order operators. An operator called ExecXQuery
could be added to allow a query to form queries un-
der program control, execute them, and process the
results.14 Other, more specialized, higher-order op-

erators could be developed to help access various
data sources or to implement customized pointer-
to-data operations.

A database manager should be able to publish the
XML schema of its views. An integrated way of pub-
lishing human readable documentation of the fields
of the view should be provided.

Data manager/development environment tools
should be able to read existing XML schemas, sug-
gest relational table formats that can retain the in-
formation, allow the designer to interactively imple-
ment storage structures, and form appropriate XML
views upon the storage structures that implement de-
sired schema types.14 The same technology can be
extended to allow users to easily form new XML views
from existing storage structures and to interact with
XML shredders or automatic transaction generators.

When performance-critical applications are written
using SAX, DOM, or XSLT, specialized versions of
these processors could be provided that support
streaming forms of XML input and/or compressed or
binary formats of XML. As the XML programming
model evolves, the data manager can provide func-
tionality that matches the needs of business appli-
cations.

A user chooses the most
applicable view and operates

XQuery against it, providing
the additional constraints to

formulate the desired result.

IBM SYSTEMS JOURNAL, VOL 41, NO 4, 2002 FUNDERBURK, MALAIKA, AND REINWALD 661

The database should provide a mechanism to directly
issue XQueries using the XML programming model,
rather than traditional database application inter-
faces or protocols. One such way is for databases to
respond directly to XQueries via SOAP requests.

These additional features can further increase the
power of XML data stores and will allow users, pro-
grammers, and applications to interact with data
servers in new ways and with greater ease.

Integrated database architecture

The integrated data manager will span relational and
XML technologies. Figure 4 depicts an integrated re-
lational and XQuery data manager (optional com-
ponents are shown with dashed lines):

The integrated data manager can respond to requests
presented by new XML interfaces such as XQuery to
SOAP, XQuery to SAX or DOM, and to traditional SQL

Figure 4 Integrated database architecture

HTTP

APPLICATION INTERFACE

SOAPDOMSAXJDBC STATIC SQLODBC

QUERY
MODEL

COMPOSED
VIEW CACHE

HIGHER-
ORDER
OPERATOR
PROCESSOR

XQUERY
FUNCTIONS
AND
OPERATORS

SQL AND
SQL/XML
FUNCTIONS
AND
OPERATORS

XML OUTPUT
PLAN REWRITE

INDEX
INTERFACE

PERMANENT
STORAGE
MANAGER

TEMP TUPLE
DATA MODEL
MANAGER

XML DATA
MODEL
MANAGER

RELATIONAL

XML

(APPLICATION INTERFACE)

VIEWS

SQL AND
SQL/XML
PARSER

XQUERY
PARSER

QUERY
REWRITE

RUN TIME

OPTIMIZATION

TUPLE
EXTERNALIZER

XML
SERIALIZER

FUNDERBURK, MALAIKA, AND REINWALD IBM SYSTEMS JOURNAL, VOL 41, NO 4, 2002662

interfaces. An integrated XQuery SOAP interface al-
lows the database manager to respond to requests
over the network without having to install and con-
figure a separate Web server. This approach also sim-
plifies designs including Web servers because it elim-
inates the need to use an SQL-based interface or
protocol in the design.

Data requests may be made using SQL/XML or
XQuery. The data manager’s application interface
determines the type of query and sends it to the ap-
propriate parser. The data manager may allow
XQuery and SQL queries to be intermixed either di-
rectly or through views. This requires a query model
and type system that accurately models both SQL and
XQuery semantics.

Query rewrites are applied against the user’s query.
Views are included and the combined query is op-
timized by the rewrites. For XQuery, views are
parsed, optimized, and cached before merging them
with the requesting query. This is important because
XQuery views normally contain many XPath que-
ries against the input views, either default views or
other user-defined views that can be collapsed into
more direct accesses. Caching composed views al-
lows later queries against the view to utilize an al-
ready simplified representation of the view. Alter-
natively, views can be simplified when they are stored
by the database. It is likely that XML queries will be
treated as dynamic queries (in contrast to traditional
static SQL queries), so compiling and optimization
time is a part of the total cost of each invocation un-
less the optimized views/queries are reused. Tech-
niques similar to SQLJ’s (SQL interface for Java) cus-
tomization feature could be developed for XQuery,
but even so, not all applications will be customized.

If the database supports higher-order operators, por-
tions of the query below the higher-order operator
are executed and the results of the subqueries form
new subqueries that are parsed and grafted into the
user query.14

If XML hierarchies will be output, query rewrites will
be performed against the simplified query to imple-
ment specific plans that are needed to help the run-
time component output correlated, hierarchical, in-
formation in an efficient way. For example, the
rewrite would apply the Sorted Outer Union ap-
proach.15 With new run-time operators, plans that
are even more efficient could be generated.

The query is then optimized to create the final run-
time plan. If the database manager supports mul-
tiple storage and indexing technologies, the optimizer
acts against an abstract interface allowing many such
technologies to be plugged into the system. Tradi-
tional features of optimizers such as plan caching and
plan storage for static SQL continue to be applica-
ble.

The run-time component executes the optimized
plan. The run-time component can execute any SQL
or XQuery semantic contained in the query model.
This allows query rewriting and optimization to be
cost-based and discretionary. In order to accomplish
these goals, the run-time component must imple-
ment the set of both SQL and XQuery functions and
operators, because each language specifies different
semantics. The run-time component must be able
to support XQuery-only operations such as naviga-
tions using XPath. The reference-based XQuery data
model must be added as a part of the run-time com-
ponent. The run-time component uses an integrated
data model that allows tuples to contain instances
of the XQuery data model. Temporary storage of
intermediate results includes temporary instances of
the XQuery data model held by a reference, and tem-
porary tuples that may contain reference instances
of the XQuery data model. If the data manager sup-
ports permanent storage in XML format, temporary
references may refer to permanent instances or tem-
porary instances.

Finally, XML results are serialized, and converted to
character format, if required. XML results will ap-
pear either by themselves or be bound out as col-
umns of a tuple. The details are handled by the ap-
plication interface.

The XTABLES16 project prototypes the XQuery re-
write portions of the integrated data manager archi-
tecture. XQueries are accepted by a SOAP-enabled
Web server (Lunar Eclipse) and are passed to an SQL
stored procedure for execution at the data server.

The XTABLES stored procedure implements the
XQuery parser and query rewriting system. Many
simple XQueries against relational data can be fully
composed into SQL-compatible queries. Given a
number of limitations such as the fact that data in
an SQL database are not ordered unless this is ex-
plicitly requested, data in SQL databases can be suc-
cessfully queried and published as XQuery views.

IBM SYSTEMS JOURNAL, VOL 41, NO 4, 2002 FUNDERBURK, MALAIKA, AND REINWALD 663

Full support of XQuery requires preserving docu-
ment order, supporting duplicate node removal, and
exact semantics of operations and functions. Imple-
mentation of the integrated database architecture
will overcome these limitations.

Conclusion and future directions

The future of XML programming will be driven by
functionality provided by standards-based languages
implemented by data management systems. Data are
stored in the relational model and for many reasons
will continue to be stored in this way, but XML is the
correct way to present messages and to communi-
cate with other systems. Data managers are the start
and/or end point of many if not most data flows, and
as such should perform the role of query processing
and data transformation. SQL/XML is a new part of
the SQL standard that allows users to form and query
XML data within the relational model. XQuery is an
emerging XML-based language that can effectively
query and transform both relational and hierarchi-
cal data. Nonrelational forms of data are becoming
increasingly important, and databases may be en-
hanced with XML-specific storage structures. XQuery
and SQL/XML are critical in supporting and integrat-
ing new hierarchical storage structures within the da-
tabase. Federated databases and mediators will also
benefit from the XQuery data model and languages
that can integrate nontraditional data sources with
existing relational data. Databases with SQL/XML and
XQuery functionality will eliminate the need to pro-
duce ad hoc, customized XML applications. Imple-
menting standards-based XML languages at the data
server will eliminate specialized skills needed for ap-
plication development, long development cycles, and
inefficient requests against data servers generated by
naive client-based solutions. XML-enabled databases
will provide easier, faster, and more efficient systems
integration efforts.

*Trademark or registered trademark of International Business
Machines Corporation.

**Trademark or registered trademark of Sun Microsystems, Inc.

Cited references

1. D. Megginson, et al., SAX: The Simple API for XML. See http://
www.saxproject.org., Version 1.0, May 1988.

2. World Wide Web Consortium, Document Object Model
(DOM) Level 1 Specification, Version 1.0, W3C Recommen-
dation 1 October, 1998. See http://www.w3c.org/TR/1998/
REC-DOM-Level-1-19981001 and see http://www.w3c.org/
DOM/DOMTR.

3. World Wide Web Consortium, XSL Transformations (XSLT),

Version 1.0, W3C Recommendation 16 November, 1999. See
http://www.w3c.org/TR/1999/REC-xslt-19991116.

4. World Wide Web Consortium, XHTMLTM 1.0: The Extensi-
ble HyperText Markup Language: A Reformulation of HTML
4 in XML 1.0, W3C Recommendation 26 January, 2000. See
http://www.w3.org/TR/xhtml1/ and see http://www.w3c.org/
MarkUp/.

5. World Wide Web Consortium, XML Schema Part 1: Struc-
tures, W3C Recommendation 2 May 2001 and XML Schema
Part 2: Datatypes, W3C Recommendation 02 May, 2001. See
http://www.w3c.org/TR/xmlschema-1/ and http://www.w3c.
org/TR/xmlschema-2/.

6. World Wide Web Consortium, Extensible Markup Language
(XML) 1.0 (Second Edition), W3C Recommendation 6 October,
2000. See http://www.w3c.org/TR/2000/REC-xml-20001006.

7. World Wide Web Consortium, Namespaces in XML, 14-Jan-
uary-1999. See http://www.w3c.org/TR/1999/REC-xml-names-
19990114/.

8. World Wide Web Consortium, Simple Object Access Proto-
col (SOAP) 1.1, W3C Note 08 May, 2000. See http://
www.w3.org/TR/SOAP/. See http://www.w3c.org/2000/xp/
Group/ for work in progress.

9. “(ISO-ANSI Working Draft) XML-Related Specifications
(SQL/XML),” J. Melton, Editor, for FCD Ballot, WG3:ICN-
011, H2-2002-063 (March 2002).

10. A. Eisenberg and J. Melton, “SQL/XML and the SQLX In-
formal Group of Companies,” ACM SIGMOD Record 30, No.
3 (September 2001).

11. DB2 Universal Database Extenders: XML Extender Adminis-
tration and Programming, SC27-1234, IBM Corporation
(2002).

12. WebSphere Studio Application Developer Programming Guide,
SG24-6585-00, IBM Corporation.

13. World Wide Web Consortium, XQuery 1.0: An EML Query
Language, W3C Working Draft, 16 August 2002. See http://
www.w3.org/TR/xquery.

14. J. E. Funderburk, G. Kiernan, J. Shanmugasundaram, E. She-
kita, and C. Wei, “XTABLES: Bridging Relational Technol-
ogy and XML,” IBM Systems Journal 41, No. 4, 616–641
(2002, this issue).

15. J. Shanmugasundaram, et al., “Efficiently Publishing Rela-
tional Data as XML Documents,” Proceedings of the VLDB
Conference, Cairo, Egypt, September 2000.

16. IBM, Xperanto Technology Demo, based on Xperanto/
XTABLES prototype technology. See http://www.ibm.com/
software/data/developer/demos/xperanto/.

Accepted for publication August 8, 2002.

John E. Funderburk IBM Software Group, Silicon Valley Lab-
oratory, 555 Bailey Avenue, San Jose, California 95141 (electronic
mail: jfund@us.ibm.com). Mr. Funderburk is a software devel-
oper at IBM’s Silicon Valley Lab. He previously worked on DB2’s
XML Extender and is currently working on XTABLES.

Susan Malaika IBM Software Group, Silicon Valley Laboratory,
555 Bailey Avenue, San Jose, California 95141 (electronic mail:
malaika@us.ibm.com). Ms. Malaika is a senior software engineer
with IBM’s Silicon Valley DB2 development group. She works
in the area of XML, DB2, and the Web.

Berthold Reinwald IBM Research Division, Almaden Research
Center, 650 Harry Road, San Jose, California 95120 (electronic mail:
reinwald@almaden.ibm.com). Dr. Reinwald joined the IBM Al-

FUNDERBURK, MALAIKA, AND REINWALD IBM SYSTEMS JOURNAL, VOL 41, NO 4, 2002664

maden Research Center in 1993, after finishing his Ph.D. degree
in computer science from the University of Erlangen-Nuernberg.
His Ph.D. thesis on workflow management received the “best
Ph.D. thesis” award from the university and was published as a
book. At IBM Research, Dr. Reinwald contributed to SMRC
(shared memory-resident cache) in DB2 Common Server, query
explain tools, workflow management with Lotus Notes�, Flow-
Mark�, and MQSeries, researched and delivered in DB2 Uni-
versal Database� support for OLE/COM, OLEDB, XML, and
most recently Web services. Dr. Reinwald is active in the design,
architecture, and implementation of SQL extensions for XML.

IBM SYSTEMS JOURNAL, VOL 41, NO 4, 2002 FUNDERBURK, MALAIKA, AND REINWALD 665

