Chapter 4 Sometimes you absolutely must write a loop- or to each his own

$.each versus $(someSelector).each()

There are two each() methods in jQuery and they are different.

$(someSelector).each(someFunction) takes the collection returned by $(someSelector) and applies someFunction to each member of the collection in turn.

$.each(someThing, someFunction()) is used to iterate over arrays and objects.

Please notice that in

 $(someSelector).each() we don't need to specify what the each loop will operate on --- it will operate on the collection which $(someSelector) returned.

But, with $.each(someThing, someFunction()) we need to tell the each loop to operate on someThing.

$(someSelector).each()

So, we have a collection of objects returned by $(someSelector) and we want to do something with them.

First of all, if you can use a jQuery method such as addClass() then you should do so. That will be both more efficient and clearer than writing a function to pass to each().

But let us suppose that we need to do something more detailed. Then we will write an anonymous function (a callback) to pass to each(). This anonymous function can have either one parameter or two:

 function(indx, elem) { //do stuff}
 function(indx) {//do stuff}

Here:
· indx is the index of the element as we iterate through the collection
· In each iteration, this will be made to point to the element you are currently operating on
· elem if it is used will also be the element you are operating on.

Using the $(someSelector).each() has the incredibly useful property that this is managed for us, and is available to us to indicate exactly what we want it to. The vagaries of using this are too well known to discuss here, so the advantage of having each() take care of this are obvious.
Then, if each() takes care of this, why would we use the function(indx, elem){ } format? Because writing elem adds clarity to the code (and because the context for this may change inside your callback, especially with AJAX.)
WARNING – You need to refer to the element you are operating on with $(this) or $(elem) if you are going to apply a jQuery method to it.
See the button which colors the list items (second button) using the css() method and compare it to the one which makes them all black again (third button) using plain assignment of property values. The third button changes a style property and so we can use this.style.color = whatever. The second button applies the css() method and so we need to use $(this).css(stuff) here.
<!doctype html>
<html lang = 'en'>
 <head>
 <meta charset="utf-8">	
 <title>each() demo</title>
 <script src="jquery.js"></script>	
</head>
<body>
 <ul id ='myList'>
	Item 1
	Item 2
	Item 3
	Item 4
	Item 5

<button type = 'button' onclick = '$("li").each(function(indx, elem){
 console.log($(this).text());
 });'>Log the list items</button>
<button type = 'button' onclick = '$("li").each(function(indx, elem){
 if (indx % 3 ==0) {$(this).css("color", "red");}
 if (indx % 3 == 1) {$(elem).css("color", "blue")}
});'>Color the list items</button>

<button type = 'button' onclick = '$("li").each(function(indx){
 this.style.color = "black";
});'>Make the list items black again</button>
</body>
</html>
 demo_4_0_v3.html
An aside about tables: You will see something like the code above applied to tables, where different rows have different background colors (for legibility).

The most common situation is to alternate two background colors – and in older code you may see the odd() or even() methods to select all such rows at once. These methods have been deprecated as of version 3.4 of jQuery.

You can adapt the code above replacing indx%3 with indx%2. Or you can use the :even selector. If you prefer the :even selector then your code will look like:

<table>
<tr><th>ColA</th> <th>ColB</th> <th>ColC</th> </tr>
<tr><td>item1A></td> <td>item1B</td> <td>item1C</td> </tr>
<tr><td>item2A></td> <td>item2B</td> <td>item2C</td> </tr>
:
</table>

<script>$("tr :even").css("background-color", "yelllow"); </script>

Because table rows are indexed from 0, the heading row will meet the :even criterion.
Of course, you may also choose to go back to the heading row and style it separately:

 $("tr").eq(0).css(["font-weight", "bold","backgound-color", "coral"]);
Again, there may be situations where summary or sub-total rows need to be emphasized. Then, adding a class subTotal to such rows will allow you to select those rows using a class selector $("tr .subTotal") to change their font-weight or color. This will be preferable to using each().
Remember that, in general, it is better to use a selector to return all the elements you wish to act upon than to iterate through the elements with $(someSelector).each()

 This site https://learn.jquery.com/using-jquery-core/iterating/ also points out when we use attr(), prop(), css() etc. as getters they retreive the appropriate value from only the first match. But we can use $().each() as a work-around. That is, we can use the each() method to walk through the whole set and retreive the appropriate value for each.
For example, the code below finds the css('color') for each li-element and logs them to the console. (Of course $('li').css('color') would give the color of only the first li.)

<!doctype html>
<html lang = 'en'>
 <meta charset="utf-8">
 <head>	
 <title>$().(each()) demo with getter</title>
 <script src = "jquery.js"> </script>
 <style>
	.blueText {color:blue; }
	.redText {color:red; }
	.greenText {color:green; }
 </style> 	
 </head>
 <body>
 <div>Some colors which you may identify by name:
	
	 <li class = 'blueText'>Blue asa the sky
	 <li class = 'greenText'>Green as the grass
	 <li class = 'redText'>Red as a rose
	
 </div>
 <script>
	 $('li').each(function(index){
 var cl = $(this).css('color');
 console.log(cl);
 })
 </script>
 </body>
</html>
 demo_4_3.html

Our script
 $('li').each(function(index){
 var cl = $(this).css('color');
 console.log(cl);
 })
could also have been written as
 $('li').each(function(index, item){
 var cl = $(item).css('color');
 console.log(cl);
 })

$.each()

$.each is used to index through an array or object and apply the function passed to each() to every entry in the array or property in the object.

The formats for arrays and objects respectively are:

 $.each(someArray, function(indx, elem) { //do something});

 $.each(someObject, function(key, value) {//do something});

Notice that, whether we are operating on an array or on an object, the first parameter of $.each() is that array or object – either its identifier or the array/object itself.

For example, we could write

 $.each([2, 3, 5, 7], function(j, elem){console.log(elem*elem);}))

The second parameter is a function – which takes an index and element of an array, or the key and value of an object.

Here is a very simple example:
<!doctype html>
<html lang = 'en'>
 <meta charset="utf-8">
 <head>	
 <title>$.(each) demo</title>
 <script src = "jquery.js"> </script> 		
 </head>
 <body>
	<script>
	 var A = [1, 2, 3];
	 alert(A);
	 var sum = 0;
	 $.each(A, function(index, value){
 sum += value;
 });
 alert(sum);
	</script>		
 </body>
	</html>
 demo_4_1.html

The $.each() method works on arrays and objects. If you wished to operate on all the letters of a string you need to first turn the string into an array. Fortunately, JavaScript's myString.split("") method will do exactly that to myString.

For example suppose we wish to count the number of Gs and Cs in a string of DNA. (Recall the such a snippet of DNA is made up of the letters A, C, G, and T. It turns out that the proportions of Gs and Cs in such a snippet will help predict whether you are looking at an exon – protein encoding region – or an intron – not encoding region.)

To do this we first use the split() function in JavaScript to turn our string of DNA into an array and then use $.each() on that array:

 !doctype html>
<html lang = 'en'>

 <meta charset="utf-8">
 <head>	
 <title>$.(each) demo with DNA</title>
 <script src = "jquery.js"> </script> 		
 </head>
 <body>
	<script>
	 var DNA = 'ATGATCCGT';
	 alert(DNA);
	 var GCsum = 0;
	 var A = DNA.split("");
	 $.each(A, function(index, value){
 if (value =='G' || value == 'C') GCsum++
 });
 var proportion = GCsum/A.length;
 proportion = Math.round(100*proportion)/100; //round to 2 decimal places
 alert("The proportion of Gs and Cs in this snippet is " + proportion);
 </script>
 </body>
</html>
 demo 4_2.html
In addition to operating on arrays and objects, $.each() will also operate on JavaScript structures which have a length property, such as a NodeList or the arguments object. Such structures are beyond the scope of this book.

Owning it:
· Suppose that you have a form in which some of the text boxes have a class forCompare.
Change the value in all those text boxes so that they are all upper case.
· Suppose you have an array of objects which represent employees. Each object is of the form
 {name: personName,
 salary:monthlySalary
 }
Give each person a 3% raise.
· Instead of counting Gs and Cs in demo_4_2.html, define an object countAll which counts the number of occurrences of each of the 4 letters in your DNA snippet. Modify the code to do the counting and use $.each() to also report the result from countAll.

