Binding event handlers in jQuery and in JavaScript

Not surprisingly, there are multiple ways to do this. And there are good reasons to use both jQuery and JavaScript, depending on your site.

1. Binding functions to event handlers in JavaScript

Note: “Registering an event handler” is the same thing as “binding a function to an event handler”.

You have already seen several ways to do this.

a. in-line

 or

b. by assigning a named function to the event handler

 function myFunc(){ //some code }

 lg = getElementById(‘logo’);

 lg.onclick = myFunc //NOTE: No parentheses for myFunc

You can use this method to attach multiple event handlers to the same event – but you do not get to control the order in which they are executed.

c. by assigning an anonymous function to the event handler

 lg = getElementById(‘logo’);

 lg.onclick = function() { //some code }

d. by adding an event listener
IE8 and earlier uses attachEvent; everything else uses addEventListener
jQuery takes care of this problem.

 lg = getElementById(‘logo’);

 lg.addEventListener(‘click’, myFunc, noCapture)

noCapture is a boolean (i.e. you code either false or true). When you code false the event handler will bubble up (see below); when you code true there is no bubbling. The default is false.

 You can also add an anonymous function as an event handler.

References: http://www.quirksmode.org/js/introevents.html
https://developer.mozilla.org/en-US/docs/Mozilla/Tech/XUL/Tutorial/Adding_Event_Handlers
http://stackoverflow.com/questions/6348494/addeventlistener-vs-onclick

2. Using on() in jQuery

In jQuery, rather than assign a function to the event handler, we use jquery’s on function .

The documentation is at http://api.jquery.com/on/ and with easier examples at the bottom
 of p. 55 and of p.56 in your book:

 $(document).ready(function() {
 $(‘#someButton’).on(‘click’, function() {
 //code for anonymous function
 };
 $(‘#someOtherButton’).bind(‘click’, someNamedFunction);
 };

If you use $ to find all the elements of a certain tag or class you can assign event handlers
all at once.

Some people will use bind instead of on in the code above. Please note that as of version 3.0 of jQuery the bind method has been deprecated, so while you may see it in legacy code, you should not use it. (See http://api.jquery.com/on/ and http://api.jquery.com/bind/ for documentation.)

There isalso an off() method which removes a function from an event handler! Details and examples can be found at http://api.jquery.com/off/

Note: For standard DOM events you may replace on(‘eventName’, function(){..}) with
 eventName(function(){….})
 Example: $(someSelector)click.(function() {//do something});

OPTIONAL explanation of on() and delegate():

First of all, with both on() (and bind()), the event handler is bound only to elements which already exist on the HTML page.

If you want the event handler to also be bound to future elements as they are created then you need a delegated binding. You can get a delegated binding either by using the delegate() function (instead of the on() or bind() function) or by using the on() function with a selector.

Example from jQuery documentation:
In addition to their ability to handle events on descendant elements not yet created, another advantage of delegated events is their potential for much lower overhead when many elements must be monitored. On a data table with 1,000 rows in its tbody, this example attaches a handler to 1,000 elements:
	1
2
3
	$("#dataTable tbody tr").on("click", function() {
 alert($(this).text());
});

There is another reason to use on(). For most browser events the event handler will bubble up the DOM all the way to the document level.

Adding a selector to the on() limits this to the path from what the selector specifies to the elements specified in the handler and also turns this into a delegated binding.

Example from jQuery documentation:
A delegated-events approach attaches an event handler to only one element, the tbody, and the event only needs to bubble up one level (from the clicked tr to tbody):
	1
2
3
	$("#dataTable tbody").on("click", "tr", function() {
 alert($(this).text());
});

Here it is the”tr” , the second parameter in the on() function which stops the bubbling.

3. Further comments about binding events in jQuery

The take home message from this section is that you should use either $(document).ready(handler) or $(handler) where handler is either a named or an anonymous function.

If you are happy to take my word for this then you can skip the rest of this section.

a. From the official documentation http://api.jquery.com/ready/
All three of the following syntaxes are equivalent:
· [bookmark: _GoBack]$(document).ready(handler)
· $().ready(handler) (this is not recommended)
· $(handler)
There is also $(document).on("ready", handler), deprecated as of jQuery 1.8. This behaves similarly to the ready method but if the ready event has already fired and you try to .on("ready") the bound handler will not be executed. Ready handlers bound this way are executed after any bound by the other three methods above.
The .ready() method can only be called on a jQuery object matching the current document, so the selector can be omitted.

My comment – in other words, use either $(document).ready(handler) or $(handler)
The .ready() method is typically used with an anonymous function:
	1
2
3
	$(document).ready(function() { //this anonymous function is the handler
 // Handler for .ready() called.
});

b. w3schools says the same thing http://www.w3schools.com/jquery/event_ready.asp
Two syntaxes can be used:
$(document).ready(function)
The ready() method can only be used on the current document, so no selector is required:
$(function)

c. Sitepoint gives 5 different ways to use ready at http://www.sitepoint.com/types-document-ready/ and then points out that your functions need to be inside the appropriate scope (see the Scope paragarap at http://www.sitepoint.com/declare-jquery-function/)
I have uploaded the two pieces of code from the Scope paragraph (in pages) and they are in this folder: update.html and update2.html

