jQuery Notes

1. The magic $()
a. jQuery’s most important function is $().
The book and documentation refer to it as a factory.
b. $() will find everything which matches the selector put inside the parenthesis.
c. The $() function returns a jQuery object which has all the matches and then it will loop thru all of them for you, doing whatever you ask.
This is sometimes called implicit looping - b/c you don’t need to write an actual for loop

2. What jQuery tries to do
a. It tries to find what you ask for, and then return it (as an object).
b. Because $() has returned an object, that object has properties and methods which you may call.

3. How nice to be ready()
a. For example, the document object has a ready() method --- actually an event handler.
b. Ready fires when the DOM is completely loaded, and, for a bunch of boring reasons, it is more reliable than onload.
c. If you ask for $(document) then jQuery returns the document object.
If you ask for $(document).ready then you are asking for the ready method which jQuery has added to the document.
d. The ready method expects you to pass a parameter to it --- namely the function which should be executed when the ready event handler fires.
e. You could also define the function right there, on the fly:
$document.ready(function() {//some code});
The part in the blue italics is the (anonymous) function you defined on the fly.

4. Why jQuery is so compact
a. Most jQuery statements result in some element or object being returned.
b. You can then use the dot notation to get a property or method of that object, in one giant long statement.
c. Implicit looping makes hides all the for and while and do loops.

5. What’s this addClass and removeClass?
a. jQuery has many useful functions in its library. You have just met two of them: addClass() and removeClass().
Why are they useful?
The first important thing to remember is that an HTML element may have multiple classes. For example, you might have a form which includes:
 First Name is required.
 <input type = “text” id = “firstName” />

then if the user submits the form without entering a first name, you might want to remove the notShowing class from the span element and add another class which is visible. Lo and behold, you have made the error message visible.
b. Are there other things you can do this way? Yes, just wait and see.

6. [bookmark: _GoBack]What selectors may I use in jQuery?
Basically, anything from CSS, from the DOM (e.g. getElementById, etc.) and from some selectors which are historically inspired by Xpath. (But as of version 2.0 jQuery you need a plug-in to use XPath syntax.)

This can get pretty fancy when you need to, but it can also be very basic and straightforward – see Chapter 2 of the text, the Reference Card in Chl 10 and the tutorial at http://api.jquery.com/category/selectors/ or start with the w3schools examples.

a. CSS selectors /retrieval of DOM elements are of the form $(‘css_selector’)
Examples: $(‘#myFavoriteId’) returns the element with id myFavoriteId
 $(‘.myClass’) returns all elements which have class myClass
 $(‘div’) returns all the divs

b. Xpath-inspired selectors are of the form $([attribute]) or $([attribute=’someValue’])
Examples: $([src]) will select all elements which have a src attribute.

c. We can mix and match:
 $(‘img[src]’) will select all images with a src attribute

d. We can add a little regex-like syntax to modify the part of the attribute we are looking at:
 $(‘img[src^=”http://”]) will select all images whose src starts with an
 http, presumably to an external file
 $(‘img[src$=”.gif”]’) will select all images which are gifs

If you see a little regex sneaking in here (^ for the start of a string and $ for the end) you are right! In that last example the second $ means the end of the src attribute (& has nothing to do with jQuery), just as in the example just before it the ^ means the beginning of the src attribute.

e. We can also use CSS pseudo classes e.g. $(‘a:visited’) and fancy positional selectors (e.g. looking for first child, last child, nth child.) You don’t need to worry about this at this point, but should know that it exists.

f. CSS allows you to define your own custom selectors – again, not something to think about just yet.

g. Warning: If you try to count out to some element that the $() has returned, CSS selectors start counting at 1, but JS selectors start counting at 0. It’s safer to us IDs.

