We are about to start a discussion of advanced JavaScript.
In addition to the references here and on the Web Centric Resources page , here are a few of my favorites: (Some on the ACM Safari site are also in ACM Books 24x7).
First some older books which are still good through the intermediate level:
· JavaScript the Definitive Guide by David Flanagan.
This is a wonderful reference book for checking out obscure details.
The 6th edition was published in 2011 and is available thru the ACM’s Safari books.
The 5th edition is available free on line at https://books.google.com/books?id=2weL0iAfrEMC&printsec=frontcover&source=gbs_ge_summary_r&hl=en#v=onepage&q&f=true
In addition to finding phrases/topics thru the table of contents, you can also use the search function for this book.
· ppk on JavaScript by Peter-Paul Koch I like this book even tho’ it is from 2007 and ignores the problems of different browsers handling white space differently (i.e. it is DOM level 1.) In ACM Safari site.
· The JavaScript Bible by Danny Goodman et al. Another good reference. It is also in Books 24x7. Again, this is older (2010) but still excellent. In ACM Safari site.
· DOM Scripting Web Design with JavaScript and the DOM by Jeremy Keith
I love this book, but it is oriented towards web design rather than JavaScript. The 2nd edition is in Books 24x7 at the ACM.
Next, some excellent more advanced books:
· JavaScript the Good Parts by Douglas Crockford. A wonderful book that you will need to read more than once to get everything out of it. Crockford’s audience is experienced developers. In ACM Safari site. The book is an outgrowth of his lectures, which are at http://www.youtube.com/watch?v=hQVTIJBZook&feature=related ; there are more talks at http://yuiblog.com/crockford/
After learning the material in this chapter you might enjoy listening to Crockford talk about programming style: http://www.youtube.com/watch?v=taaEzHI9xyY&feature=youtube_gdata_player
· You Don’t Know JavaScript by Kyle Simpson is at https://github.com/getify/You-Dont-Know-JS (scroll down a bit to get it – all his excellent books are there) and https://github.com/getify and available through the ACM-Safari site
The Crockford and Kyle Simpson books are advanced, but really worth digging through.
Finally, some jQuery books:
· Learning jQuery by Jonathon Chaffer and Karl Swedberg –several editions in the ACM Safari site. is one of the books for this course. It is the best place I know to start learning jQuery.
· jQuery in Action by Bibeault and Katz – this is the book to read after the Learning jQuery book. It is available thru the ACM’s Safari books.
· Beginning jQuery by Jack Franklin and Russ Ferguson- also looks good, but may be dated. It is on the ACM Safari site.

JavaScript According to Douglas Crockford with Further Explanations- part 1
 V 2018_07_21

The original material is at
http://javascript.crockford.com/survey.html
http://javascript.crockford.com/javascript.html
and further articles and links to Crockford’s videos are at
http://javascript.crockford.com/

I highly recommend the videos and Crockford’s book “JavaScript: The Good Parts”.

A note on semi-colons
 Semi-colons are optional as statement separators when you start the next statement on the next line, but they are HIGHLY RECOMMENDED.
 I use them and expect you to use them too.

Data types
Here is what Crockford says about Data Types:
Data Types
JavaScript contains a small set of data types. It has the three primitive types boolean, number, and string and the special values null and undefined. Everything else is variations on the object type.
Boolean has two values: true and false.
Number is 64-bit floating point, similar to Java's double and Double. There is no integer type. Division between two integers may produce a fractional result. Number also includes the special values NaN (not a number) and Infinity.
String is a sequence of zero or more Unicode characters. There is no separate character type. A character is represented as a string of length 1. Literal strings are quoted using the ' or " characters. The quote characters can be used interchangeably, but they have to match.
'This is a string.'
"Isn't this a string? Yes!"
'A' // The character A
"" // An empty string
Escapement is done with the \ character, like in Java. Strings are immutable. Strings have a length member which is used to determine the number of characters in the string.
var s = "Hello World!";
s.length == 12

Comments & explanation:
· You can use single or double quotes about strings – but they need to match.

· Strings are immutable – that means that they can’t be changed.
What this means is that you can’t use a function to change one or more characters in the string. You can, however write code such as greeting +=” Mary”;
 In this situation, a new string is formed (namely greeting + “ Mary”) and it is stored in a new location, with greeting pointing to it (reassigned to point to it).
So, it may appear as though you have changed the string, but the old greeting is still out there somewhere in memory.
On the other hand greeting.charAt [0] =”H” will not change greeting.

· JavaScript treats false, null, undefined, "" (the empty string), and the number 0 as false. All other values are treated as true.

· Classic JavaScript has only 3 primitive types – number, string and boolean. That’s it!! Although ES6 did add a new primitive type, Symbol. Symbol is very similar to String, but is delimited with backticks (the symbol to the left of the ‘1’ on a QWERTY keyboard.)
We will not use or discuss symbols, though the ES6 books cover them.
· JavaScript does NOT have a separate char type --- a character is simply a string of length 1.
· JavaScript does NOT have separate types for integers and real numbers – they are both of type number.

· So how do we get arrays, and more complicated things? Everything else is an object of some kind, as we are about to see. But first, a short detour.

Associative arrays and arrays
For people who are new to JavaScript and associative arrays (also called hashes in php and dictionaries in python):

An associative array is a list of pairs, where the first item in the pair is a name and the second is the value to be associated with that name. These are referred to as name-value pairs (or sometimes as key-value pairs).

Example:
myReferences = {advisor: “Menzin”, helpdesk: “Borque”, summer2011: “Bill Gates”};

In the above example there are 3 name-value pairs. The first pair has the name advisor and the value “Menzin”.

The name functions like an index in an array. But associative arrays are more flexible, as the name or key does not have to be a number.

You can get a hold of the value associated with a name (key) in either of two ways:

 advisorName = myReferences.advisor;

 advisorName = myReferences[‘advisor’];

Please notice that when you use the array-notation the name is enclosed in quotes (single or double.).

You can also add more name-value pairs to an existing associative array:

 myReferences.summer2010 = “Mark Zuckerberg”; or

 myReferences[“summer2010”]=’Mark Zuckerberg’;

Now myReferences will have 4 name-value pairs.

The value for some name may be a function (as you will see) & then we call it a method.

In JavaScript, as mentioned above, everything which is not one of the primitive data types (remember: number, string or Boolean) is an object and objects are implemented as associative arrays.[footnoteRef:1] [1: Advanced comment
Object literal notation refers to the way we defined the myReferences object (hash):
 myReferences = {advisor: “Menzin”, helpdesk: “Borque”, summer2011: “Bill Gates”};
as opposed to
 myReferences = new Object();
 myReferences.advisor = “Menzin”; etc.
Even if you don’t like to write objects this way you should be comfortable reading code which uses this notation.
]

Example:
One object we deal with often is window. It refers, of course, to the window that your script is running in.
There are several properties of window that we use often:
 window.navigator (this refers to the browser which the window is in)
 window.document (this refers to the document/webpage which is running)
 window.location (this refers to the URL for the window.)

If I am looking at the Boston.com site then window.location has the value http://www.boston.com/
NOTE: I could also refer to window[‘location’] but the dot notation is more convenient and much more common.

Exercise: Write a script which creates two objects, myFriend and myself; create one using object literal notation and one using new Object. Each object should have name-value pairs for firstName, middleName, and lastName. Your script should alert the value of firstName from each of the objects.

Exercise: Explain in your own words what the following code does:

Example
Arrays are also hashes (associative arrays), but they have the special feature that they are indexed by integers, starting (of course) from 0.

Arrays may be defined in several ways:

 primesTo20 =[2, 3, 5, 7, 11, 13, 17];

 primesTo10 = new Array();
 primesTo10[3] = 7; etc.

Comment: when primesTo10 is first declared it is of length 0. When primesTo10[3] is given the value 7, then the array becomes of length 4. The 0th, 1st and 2nd entries are undefined and the last has the value 7.

This highlights your ability to add entries to arrays on the fly![endnoteRef:1] [1:]

Comments:2
· Associative arrays in JavaScript are very very flexible: you may add entries (as we will see later), change what is assigned to a particular key, and even assign a function to a key/name.

· Arrays in JavaScript are very flexible – because they are really associative arrays, indexed by numbers.

This is why you may add new entries to an array --- something which is not possible in some other languages.

· An array may mix the type of entries it has – numbers, strings, other arrays, etc.

· Watch out for the sort() function for arrays. It is lexicographic (alphabetical) so that 123 comes before (earlier in the sorting than) 25.

· Please notice the capitalization in primesTo10 = new Array();
It is customary to capitalize the first letter of constructor functions – so for those constructors that are built into JavaScript (e.g. Array(), Date(), Math()) you must capitalize the first letter.

2 More advanced comments:
· Whether you explicitly call the Array() constructor function or not, an array is a particular type of object (hardly surprising) which also comes with a built in length property and built in sort() and reverse() methods.
For example, after primesTo10 [3] has been set to 7, primesTo10.length will return the value 4.

· Watch out for the sort() function for arrays. It is lexicographic (alphabetical) so that 123 comes before (earlier in the sorting than) 25.

Variables and var

Because JavaScript is “loosely typed” you do not need to specify a type when you declare a variable.

When you are outside a function, any variable will be global – i.e. you can refer to it, change it, etc. anywhere in your script. The use of var is optional and has no effect for variable declared outside a function.

Example:
The following are equivalent:
 var x=2; or x=2;

When you are inside a function, var makes a big difference.

function squared (x)
 {var y=x*x;
 z=x*x;
 return z;}

· z is a global variable because it is defined without the var.

 If you had previously defined a global variable z, then executing this function will change its value.

· y is a local variable because it is defined with the var; y make be referenced only inside the scope of the function.

If you had previously defined a global variable y then you will not be able to reference it inside squared and its value will be unchanged when squared finishes executing.

Again:

The ONLY way to get a local variable (prior to ES6) is to define it inside a function using the reserved word var. Then it will have function scope.

All other variables have global scope.

Here is how Crockford puts it:
Vars
Named variables are defined with the var statement. When used inside of a function, var defines variables with function-scope. The vars are not accessible from outside of the function. There is no other granularity of scope in JavaScript. In particular, there is no block-scope.
Any variables used in a function which are not explicitly defined as var are assumed to belong to an outer scope, possibly to the Global Object.
Vars which are not explicitly initialized are given the value undefined.
Vars are not typed. A var can contain a reference to an object, or a string or a number or a boolean or null or undefined.
A new set of vars is made every time the function is called. This allows functions to be recursive.
NOTE: ES6 introduced two other kinds of variables let and const. Both of them provide block-level scope. That is they are accessible inside the { } where they are defined. Not surprisingly, the value of a const can’t be changed (unless it’s an array or object --- in which case the address it points to doesn’t change but the values in the array and the number of entries can change).
 We will not use let and const although they are available in almost all contemporary browsers. (Cell phone users often don’t update their browsers and Opera Mini does not support let and const as of now.)
 On the other hand, if you are writing software for an enterprise system which will never be used on a cell phone (e.g. hospital records), then go ahead and use let and const. They answer a long standing problem in JavaScript.
Note: When you use a var it’s definition is hoisted to the top of its scope (global scope or function scope) . What that means is that if somewhere inside a function you write var x =2; then JavScript acts as though your function began with var x; and the value is x is undefined until the point in your code where you assigned it the value of 2. (Let and const are not hoisted.)
Now we can turn our attention to functions:
Functions –JavaScript According to Crockford –Part 2 v 2018_07_21

Functions in JavaScript
1. What is a function?
2. Defining a function
3. Using functions
4. Using the prototype
5. Nested functions
6. Scope of variables and closure

1. What is a function? (Please read twice)
The first thing you need to know about a function is that in JavaScript it is an object. (They are Function objects – in the same way that an array is an Array object.)

Remember also that objects are implemented as associative arrays – and therefore functions are implemented as associative arrays.

That means that in JavaScript a function can have properties, methods, and also be assigned to a variable (such as the attribute of another object.)

As in other languages, a function is a named set of statements which has 0 or more parameters passed to it, executes some code, and may return a value (or else it returns undefined).

And as in other languages, you have to define the function and then you may call it from the body of your code (script.)

Also, some functions are built in. For example, buttons, images, etc have built into them an onclick event handler. This is a function which is activated when the button or image in question is clicked.

The onclick function has no code initially, but you can assign code, or another function to it.

Similarly any array has a built in sort() function and and you may assign other code to it!

The parseInt and parseFloat functions are built into JavaScript.

Quiz yourself: What is new about functions in JavaScript?

2. Defining a function
a. The most common way to define a function is with a function declaration (using the function statement.)

	function squaring(x) {
 return x*x;
 }

 function doubling(x) {
 y=2*x;
 return y;
 }

 function lorem() {
{return “Lorem ipsum dolor sit amet, consectetur adipiscing elit. Morbi imperdiet nibh ac nisi aliquam pellentesque. Curabitur pretium, urna vel auctor fringilla...”;
}

The general form here is

	function nameOfFunction ([optional list of parameters, separated by commas]){
 statements;
 }

Please note that the opening { belongs on the first line (or the JS interpreter may do odd things) and that, as we learned earlier, you should end statements with a semi-colon, rather than leaving it to the interpreter to fill them in (mosty correctly, but not 100%.)

Exercises: [Write a function which takes two parameters x and n and returns xn]
 [Write a function which accepts two arrays of numbers A and B and adds their corresponding values (leaving the result in A).]
 Write a function which appends the appropriate letters to a number, so that 1 becomes 1st, 2 becomes 2nd etc. (Some numbers are irregular – so think this through carefully. Also, remember that reducing mod 10 will give you the units digit.)
 Write a script which prints out the 12 Days of Christmas, or any similar recursive song. Hint: It is easiest if you put the days in an array and have a function which prints out any one day (going down from the day you specify). To save your typing, I have provided the array and also a copy of what the song should look like in the appendix.
 Your page should TEST all your code.

b. In more advanced applications we sometime see a function written as an expression or a function literal.
This will look identical to the declaration above, except that the name of the function is actually optional. Unnamed functions are called anonymous. They may be used as callback functions (in Ajax) and also as methods which belong to an object (below).

Examples:
 var cubed = function qub(x) {
 y=x*x*x;
 return y;
 }

 We might call this as cubed(10). The qub function may be called only inside itself (i.e. recursively.)

Think a bit about what we have done here. …. Our cubed is a variable whose value is a function. We can call it as cubed(10).

In a similar way we may use an anonymous function to compute the value of a property. Suppose that grades is an array of numbers. Then I may define a function grades.scale as follows:

 grades.scale = function () {
 sum =0
 for (i=0; i<grades.length; i++) sum+=grades[i];
 av = sum/grades.length;
 fudge = max(0, 85-av);
 for (i=0; i<grades.length; i++) grades[i]+=fudge;
 }

NOTE: In the examples immediately above you may name the function or not.
In the first example I named the function; in the second example I didn’t.

The result is the same, and the name on the right side of the = is useful only for calling the function inside itself.

That is, if you plan to call the function from inside itself (i.e. recursively) then you
need to name it. Otherwise, you don’t need to name it.

You should get used to reading code with anonymous (unamed) functions even if your coding preference is to name them.

Exercise: In the previous exercise you had an array which held the various gifts for the 12 Days of Christmas. Now add a property for each repetitive part (e.g “my true love gave to me”) to that array and add a function to the array which is passed the parameter j and prints out the verse for day j.

Exercise: Add anonymous functions to Point (in the function declaration) which reflect about the y-axis and the origin.
 Add an anonymous function to Point which tells you what quadrant the point is in. Alert or console.log() the quadrant.

c. Since each function is an object, we may define a function as a new Function object. (Remember that the first letter of a built in object is capitalized.)

 tripled = new Function(“x”, “return 3*x”);

The general form here is

 name = new Function (“param1’, “param2”,.., “paramk”, “body”)

This is slow and strongly discouraged. Do NOT use this. Just recognize it if you encounter the code.

d. The arguments to a function: When you define a function you will automatically get an array named arguments which holds all the parameters that are passed into the function when the function is called. Like any other array in JavaScript, it is indexed starting at 0, and you may examine it.

Example:
function allPositive(a, b, c, d, e) {
 //returns true if all the arguments are >0 and false otherwise.
 allPlus = true;
 for (i=0, i<arguments.length)
 allPlus = allPlus && (arguments[i] > 0);
 if (allPlus) return true else return false;
}

3. Using functions
When a function is defined with a declaration as in 2a you call it in your code (being sure to capture any value which is returned in a variable).

 square1 = squared(2);

This also works for anonymous functions and constructor functions.
 y= cubed(10); z=tripled(100);

This may look a little odd for the cubed example, but remember that cubed is a varaible to which we have assigned a function – so we can pass it a parameter and get back a result.

When a function is defined as an expression which is a method (looks like a property) of a variable as in 2b you call it using the dot notation:

 grades.scale()

Notice the parentheses --- remember that scale() is a method.

Finally, a very important group of functions are those which are constructors. We will use this to refer to the object we are creating.

First we define the function:

 function Point(x_value, y_value) {
 this.x = x_value;
 this.y=y_value;
 this. reflectAboutXAxis = function(){ this.y = -this.y;}
 }

We may now create new Points:

 origin = new Point(0,0);
 upperRight = new Point(10, 10);

By default the constructor will return the newly created object – you may over-ride that default behavior with a return statement.

 Let’s think carefully about what we have done in this example above :

· We defined a function Point and passed it some parameters

· We then used those parameters to set properties of Point

· We were also able to define a method of Point.

· We used this function Point to declare some new Points (origin, upperRight).

· Each time we called new Point(…) the function created a new object and then returned that object which was assigned to our variable (origin or upperRight.)

· We have essentially defined something like a class (namely Point), with a constructor function.
It is NOT the kind of class you have in Java, but it may be used for object oriented programming, and it is the backbone of JSON (JavaScript Object Notation.)3 (JavaScript is described has “class-free” with objects able to inherit from other objects via the prototype.)

· We used this to refer to the object we were constructing. Point returns this – i.e. Point returns the object we just constructed --- so we can assign it to a variable (e.g. origin).

 Here is how Crockford puts it:
Objects and this
A function is an object. It can contain members just as other objects. This allows a function to contain its own data tables. It also allows an object to act as a class, containing a constructor and a set of related methods.
A function can be a member of an object. When a function is a member of an object, it is called a method. There is a special variable, called this that is set to the object when a method of the object is called.
For example, in the expression foo.bar(), the this variable is set to the object foo as a sort of extra argument for the function bar. The function bar can then refer to this to access the object of interest.
In a deeper expression like do.re.mi.fa(), the this variable is set to the object do.re.mi, not to the object do. In a simple function call, this is set to the Global Object (aka window), which is not very useful. The correct behavior should have been to preserve the current value of this, particularly when calling inner functions.
My Comment: do.re.mi is the object and fa() is a method of do.re.mi

Later , when we talk about closures, we will see that any function has a context in which it is called and that this points to that context. So in bar() we get this pointing to foo.

Constructor
Functions which are used to initialize objects are called constructors. The calling sequence for a constructor is slightly different than for ordinary functions. A constructor is called with the new prefix:
new Constructor(parameters...)
By convention, the name of a constructor is written with an initial capital.
The new prefix changes the meaning of the this variable. Instead of its usual value, this will be the new object. The body of the constructor function will usually initialize the object's members. The constructor will return the new object, unless explicitly overridden with the return statement.
The constructed object will contain a secret prototype link field, which contains a reference to the constructor's prototype member. (See next section)
Return
JavaScript does not have a void type, so every function must return a value. The default value is undefined, except for constructors, where the default return value is this.

My comment: Of course, you may specify what is being returned!

Another (advanced) reference to functions is at Mozilla’s developer site: https://developer.mozilla.org/en/JavaScript/Reference/Functions_and_function_scope

NOTE: No matter how you define the function (with a function declaration, with a function expressions, or as a new Function object), a function may call itself RECURSIVELY.

4. Using the prototype

All objects, including functions, have a prototype. We can use the prototype to add properties and methods to the object.

For example, if I decide that for any point I want to know its distance from the origin I simply say:

 Point.prototype.distance = function(){ d1 = this.x*this.x + this.y*this.y;
 return Math.sqrt(d1);}

I have added an anonymous function to Point by using its prototype. I have also assigned that function to the name distance – that is, distance is a method which was defined with the anonymous function.

Please notice that the code above adds the distance method to all Points. That is what the prototype allows us to do. The prototype basically gives you the definition of the object and allows you to play around with it (add new methods and properties, redefine existing methods, etc.)

I could also use the prototype to add a method to Point which was a previously defined function:

 function dist(u, v) {return Math.sqrt(u*u+v*v);}

 Point.prototype.distance = dist(this.x, this.y);

Either way, we have added a distance method to all Points and I can now
 alert(upperRight.distance() +” is my distance from the origin.”);

Notice the parentheses in upperRight.distance() --- because distance() is a function (method).

Also, oddly enough, it doesn’t matter if the distance method is defined after you have declared origin and upperRight.

When you ask for upperRight.distance(), the JavaScript interpreter will first look for a distance() method for upperRight, and if it doesn’t find such a method it will then look for a method of that name which belongs to the prototype of upperRight’s constructor (the Point function.)

In other words:

· For every object created with a constructor function there is a reference to that constructor function in the object.

· When you access the prototype of a constructor function you are adding/modifying all the objects it was used to create ---- even if that is the constructor function for a built in object (e.g. Array.) and even if you do so after you have used that constructor to create new objects!

· Finally, here we used prototype to add distance() to all Points; we could have added it only to one point as follows:

 upperRight.distance = function(){ d1 = this.x*this.x + this.y*this.y;
 return Math.sqrt(d1)}

 In this last bit of code I don’t need to use the prototype because I am modifying only
 one object (upperRight), not all the points (although you could use the prototype for
 upper Right).

· To summarize:

· Every object has a prototype – it basically holds all the information for building that object.

· You can modify that prototype.

You do this by using the reserved word prototype:

 myObject.prototype.newMethodOrProperty = ….

· If the object is something which is defined as a function (example:
function Point(..){..}) it will be like a class, and then the prototype is for all the objects which that constructor is used to create – in this example for all Point objects.

· If the object was created using a constructor (example: origin = new Point(0,0))
 then the prototype is just for that one object – in this example for origin.

Exercise: Use the prototype of Point to add a function distanceFrom(otherPoint) which returns the distance between the given Point (this) and otherPoint.

[Exercise: A segment of a line is defined by giving its two endpoints. Write a constructor function for line and a method for finding its length.]

Here is what Crockford says:
Prototype
Objects contain a hidden link property. This link points to the prototype member of the constructor of the object.
When items are accessed from an object by the dot notation or the subscript notation, if the item is not found in the object then the link object is examined. If it is not found in the link object, and if the link object itself has a link object, then that link object is examined. If the chain of link objects is exhausted, then undefined is returned.
This use of prototype link chains provides a sort of inheritance.
Members can be added to the prototype by assignment. Here we define a new class Demo, which inherits from class Ancestor, and adds its own method foo.
function Demo() {}
Demo.prototype = new Ancestor();
Demo.prototype.foo = function () {};

Notice that Demo.prototype = new Ancestor(); makes Demo have all the properties and methods of Ancestor --- and then the third statement adds the foo method to Demo.

Optional: The indented material from here to Summary so far.
Some elegant examples of using prototypes may be found at http://javascript.crockford.com/prototypal.html In the first example
 function object(o) {
 function F() {}
 F.prototype = o;
 return new F();
 }

Crockford creates a new object (remember a function is an object) with the same prototype as the object o which is passed to the function. You use this by calling:

 newObject = object(oldObject);

NOTE: Since Crockford wrote this page Object.create() has become a standard part of ECMAScript (i.e. of JavaScript) and you can now just say:

 newObject = Object.create(oldObject)

without having to write your own object() function. Further, Object.create will take an optional list of properties.
Now newObject is a constructor which may be used to create newObject’s Of course, there is no point in doing this unless you add some properties or methods to newObject.

Example: You might have defined Point as only with x and y coordinates and then defined PointWithCalcs which is a Point to which you added the distance method.

Object.create() was introduced in 2012 and is now fully supported in all browsers and well accepted.
Further, doesn’t make sense unless you need complex varieties of inheritance. Probably the clearest explanation is at http://dailyjs.com/2012/06/04/js101-object-create/ and it is not light reading. A further discussion is at http://stackoverflow.com/questions/2709612/using-object-create-instead-of-new
There are examples at https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/create#Example:_Using_propertiesObject_argument_with_Object.create and http://msdn.microsoft.com/en-us/library/ie/ff925952%28v=vs.94%29.aspx

Summary so far:
· If an object already has a place for a method to be attached – such as onclick – then you may specify what that method is either by defining an anonymous function (Examples a and b) or by assigning a function to it (Example c):
Examples:
a. document.myForm.myButton.onclick=function() {alert(“Surprise!”);}
 or
 myB=getElementById(‘myButton’);
 myB.onclick = function() {alert(“Surprise!”);}

b. <input type=”button” id=”myButton” onclick=’alert(“Surprise”);’>

c. function SurpriseThem() { alert(“Surprise!”);}
 document.myForm.myButton.onclick=SurpriseThem;

Note that
· in HTML5 almost everything is clickable, so you can assign a function NAME to the onclick event handler of an image, an anchor, a span, etc.
See https://developer.mozilla.org/en-US/docs/DOM/element.onclick for some code.

· In Ajax (next lesson) we will assign functions to (previously named but empty) properties of the XMLHttpRequest object, just as we did to onclick here.

· When you assign the SurpriseThem function to the onclick event handler, you write only the NAME of the function – no parentheses!
Your two choices are:
document.GetElementById(‘myElement’).onclick=nameOfSomeFunction;
document.GetElementById(‘myElement’).onclick=function() {//code;}

· In the code directly above, document.GetElementById(‘myElement’) returns the actual myElement, so you can then get its onclick property.

· You will sometimes see code in the <head> which loops through all the elements of a particular type (e.g. all the anchors or images, using the anchors[] or images[] arrays) and assigns event handlers to them. This can be tricky because of closures, so you should use jQuery or the method explained at http://james.padolsey.com/javascript/closures-in-javascript/

· If you wish to add a new method/property to a specific object you can just do so:
 upperRight.frenchName= “droitEtHaut”;
 upperRight.reflectAboutOrigin = function(){this.x *= -1; this.y *= -1;};

· If you wish to add a new method/property to all the objects built using some constructor then you should use the prototype:
Point.prototype.newMethod=function(){//code using this to access other
 //properties of Point;}
Point.prototype.newMethod=nameOfSeparatelyDefinedFunction;

5. Nested functions

Functions may be nested, i.e. declare one function inside another.

As always, the inner function may be called only by the outer function.

Functions are also hoisted, are hoisted above the vars. That is, if your code has functions Outer1 and Outer2 and (global) variables x, y, z then JavaScript will act as though those function had been declared at the top of the code, followed by the declarations of x, y, and z, no matter where in the code you have defined those functions and variables. Of course, if Inner() is defined inside Outer1(), then Inner() is hoisted to the top of Outer1().

6. Scope of variables and closure
a. A function normally returns this (see the Point example above) or a value which is specified.
Since a function can return an object, it may return a function (which is just a special type of object.)
Here is an example from http://mark-story.com/posts/view/picking-up-javascript-closures-and-lexical-scoping :
 function sayHello(name) {
 var phrase = 'Hey there ' + name;
 var sayHi = function() {
 alert(phrase);
 };
 return sayHi;
 }
var talk = sayHello('Peter');
talk(); //alerts 'Hey there Peter'
What happened here?
· The function sayHello has a local variable, phrase. It also uses that local variable to create a new function, sayHi, and then sayHello returns that new function sayHi.
· There are two interesting things happening here:
The first is that function sayHello is returning another function (namely sayHI).
The second is that when sayHi is returned it has access to all the variables and parameters where it was created – namely the parameter name and the var phrase, and of course all the global variables.. (This is called the context for sayHello)
· Next we call the function sayHello() with the parameter ‘Peter’ and assign what is returned to the variable talk. That is, talk is the function sayHi where name has the value “Peter”.
· Finally, since talk is a function, we call it: talk(). Of course, that means we invoke sayHi with name having the value of “Peter” and phrase having the value of ‘Hey there Peter’.
Exercise: Look at the code below and explain what is going on.

 function multiplier(x) {
 return function(y){ return x*y}
 }
 double = multiplier(2);
 triple = multiplier(3);
 alert(double(2)); //4
 alert(double(10)); //20
 alert(double(triple(100))) //600
b. Function definitions may be nested – and then interesting things happen.
Suppose your code contains:

 function outer(o1, o2) {
 var ov1=6;
 var ov2 = “Hello”;
 //more statements for outer
 function inner(i3, i4, i5) {
 var iv1=0;
 //more statements for inner
 return something;
 } //end of inner
 //more statements for outer
 } //end of outer

We have defined a function outer(o1,o2) and inside it we have defined a function inner(i3, i4 ,i5) then:
 outer() may call inner()
 outer() has access to all its own parameters(o1 and o2) and
 local variables (ov1 and ov2)
 outer() does NOT have access to inner()'s local variables
 inner() has access to all its own parameters (i3,i4,and i5) and
 local variables (iv1)
 inner() has access to outer()'s parameters and local variables --- even if
 outer() has finished executing.

This is referred to as a closure.
i. A closure provides a function with the context in which it is called --- so, in this example, inner has access to the context in which it was called ---- all the parameters and variables of outer and all the parameters and variable which outer has access to.

ii. In this example, the context of outer() is the global variables, but if inner() were defined inside middle() and middle() were defined inside outer() then middle() would have access to outer()’s context and inner() would have access to both middle()’s and outer’s() contexts.

iii. Each time you call outer() you created a closure which points to the variables for outer; different calls get different closures.

This is what happened in the sayHello example in the previous paragraph. Please notice how unusual this is! The function sayHello had finished executing, but sayHi was still able to get access to its local variable phrase!

b. Sometimes we want to take advantage of closures and sometimes we want to avoid them.

c. To avoid closures do NOT nest your function definitions (or have a function return another function.)
 More explanations may be found at https://developer.mozilla.org/en/JavaScript/Reference/Functions_and_function_scope and http://mark-story.com/posts/view/picking-up-javascript-closures-and-lexical-scoping
Another explanation with examples may be found at https://developer.mozilla.org/en/JavaScript/Guide/Closures
d. Read http://sixrevisions.com/javascript/6-advanced-javascript-techniques-you-should-know/#more-1771 on closures, paying particular attention to the example, which you should be able to explain.
e. Read http://robertnyman.com/2008/10/09/explaining-javascript-scope-and-closures/ again paying attention to the examples. Notice that in the Yahoo! Example the person() function returns an object (associative array) which has two name-value pairs. In both these pairs the name is the name of a function – which makes the function public, while the variables stay private.
f. More examples of this type (optional) can be found at http://javascript.crockford.com/private.html and at https://developer.mozilla.org/en/JavaScript/Guide/Closures
Both sites are aimed at experienced programmers.
g. Our wonderful ‘this’ is set incorrectly for inner functions. The standard work-around is to define
 var that=this;
in the OUTER function, so that the inner function may use ‘that’.
h. jQuery makes use of closures, and we will discuss that when we come to jQuery.
i. [bookmark: _GoBack]If you are eager to look ahead, a very clear explanation of this may be found at http://javascriptissexy.com/understand-javascripts-this-with-clarity-and-master-it/
Kyle Simpson has devoted a wonderful, short book to this & object prototypes at https://github.com/getify/You-Dont-Know-JS/tree/master/this%20%26%20object%20prototypes and a wonderful, short book to scope and closures at https://github.com/getify/You-Dont-Know-JS/tree/master/scope%20%26%20closures (Scroll down the pages to get to the chapters.)

7. Exercise: Explain what is happening in the Beer example at http://mark-story.com/posts/view/picking-up-javascript-closures-and-lexical-scoping

8. If you think you understand this, start reading Integrate into Closures in this folder.

Appendix:
The 12 Days of Christmas
The lyrics may be found at
http://www.worldofchristmas.net/christmas-songs/12-days-of-christmas.html
or
http://www.41051.com/xmaslyrics/twelvedays.html

For purposes of this exercise it is OK to write 4th for fourth, etc.
Also, in the array below I have included the ‘and’ for day 1, but you will need to edit it out as a special case in your song.

You will notice that gifts[0] is blank so that gifts[i] hold day i - and the array has 13 entries.

gifts= [“ “,
		“and a partridge in a pear tree”,
 “2 turtle doves”,
 “3 French hens”,
 “4 calling birds”,
 “5 golden rings”,
 “6 geese a-laying”,
 “7 swans a-swimming”,
 “8 maids a-milking”,
 “9 ladies dancing”,
 “10 lords a-leaping”,
 “11 pipers piping”,
 “12 drummers drumming”]

OF COURSE you should copy this into Notepad befor you copy it into your code, so you won’t have any line feeds etc. in your code.

