Class and Lab exercises for Chapter 9

Class (may spill over into lab)

1. USING THE HISTORY OBJECT
    Write a very simple page which prints a message and has an anchor with the text:
    I can tell where you have been.
    To that anchor's on click event handler attach a bit of code which goes back 3 pages.
    Test it ---- note you need to have been to several pages before you test it.
    note: ALSO http://www.w3schools.com/jsref/default.asp has references on the browser objects.
    and http://www.w3schools.com/jsref/obj_history.asp has the history object

2. ADDING PROPERTIES AND AN EVENT HANDLER
    Suppose you have a page with the code (in a script):

    function city(cityName) {
          this.name = cityName
          }

    Boston = new city('Boston')
    NYC = new city('NYC')
    Paris = new city('Paris')

    cities = new Array(Boston, NYC,Paris)      //there are no quotes here b/c this is an array of the city OBJECTS
    sites = new Array('Boston Commons', 'Statue of Liberty', 'Eiffel Tower')

    I gave you only 3 cities, but imagine that your list had 50 cities and their sites, so that you want to use a loop.

    a. Write a loop which adds the site to each city as a property.

    b. Write a loop which creates a string (that you will eventually document.write in part c.) by concatenation; the loop will put the name of each city on a button as its value and has an onclick event handler that alerts the name of the site in that city.

    c. create enough other code so that you can document write the whole thing.
        It may help you to see what happens at http://web.simmons.edu/~menzin/CS321/Unit_2_JavaScript_and_HTML_Forms/Chapter_4_Forms_and_Event_Handlers/Programs_for_Chapter_4/forms2.html (the forms2.html page in Chapter 4) --- you can ignore the CDATA stuff as we are writing HTML5.

3.CHANGING THE SIZE OF AN IMAGE
   http://web.simmons.edu/~menzin/CS321/Unit_2_JavaScript_and_HTML_Forms/Chapter_4_Forms_and_Event_Handlers/Programs_for_Chapter_4/eventHandler3.html has a simple rollover.  (eventHandler3.html in Chapter 4).

   Write a page which has 5 images.  

   Write two functions blowUp() and usualSize() which change the dimensions of the image.  Attach them to the onmouseover and onmouseout event handlers.  You should do this in a loop, as you go through the array you get from document.getElementsByTagName().

    If you have forgotten the details, https://developer.mozilla.org/en-US/docs/Web/API/Document.getElementsByTagName provides a reference.

    BTW there is also a https://developer.mozilla.org/en-US/docs/Web/API/Element.getElementsByTagName
    THIS IS VERY USEFUL - for example if you have multiple lists with id's  urgentList, routineList, whyBotherList then you could grab all the items on the urgentList with the following code:
      hot = document.getElementById('urgentList')
      musts = hot.getElementsByTagName('li')


4.. ROLLOVERS
   http://web.simmons.edu/~menzin/CS321/Unit_2_JavaScript_and_HTML_Forms/Chapter_4_Forms_and_Event_Handlers/Programs_for_Chapter_4/eventHandler3.html has a simple rollover.  (eventHandler3.html in Chapter 4).
   Write a page which has 5 images.
    Loop through the images[] array and to each image attach the event handlers for onmouseover which the function growl.  the growl function which should be written separately in your script will change the source to some nasty image.
    You should also write a loop which does the following for each image: gets the string for the original source (remember that growl() will change it) and attaches to that image's onmouseout event handler a function which returns the image to the original source.

5. A LIVELY TO-DO LIST
Suppose that you have an ordered list of tasks.  The id for the list is toDo.
To each list item on toDo add an attribute urgency.
Loop through the list asking the user for the value of urgency (1, 0, -1 where 1 is hot, 0 is routine and -1 is unimportant ===> but you should ask for the urgency in words and set it in numbers).
Set the urgency attribute for the item as appropriate.
Now write a button  whose value is "Highlight urgent tasks" which puts in bold all the tasks with urgency 1.
It may be easiest to do this by using classes, as I showed you last week with reddish and bluish.

Lab – Simulation exercise
This is a simulation for the post office or an ER or some resource in a computer system.

There will be one long line of people/programs waiting to be served and they will be served on a first come, first served bais.

There are 6 servers, each of which has two properties - processingTime and doneAt.
The procesingTime property is how long it takes the server to take care of one customer.
The doneAt is the time when the server finishes.

Initially all the servers are free and have doneAt set to 0.
The servers have processingTime of 4, 6, 8, 5, 6, 7 time periods respectively.

Your page should initialize all servers using a function Server which you will define.

You should also have an way to represent which servers are free and which are busy at any time --- it could be an array of 1's and 0's or of clear and solid dots, or anything else you wish.

Finally you need an array called status.  each entry in status[] will show what the system looks like.  That is status[0] is how the system starts out, status[1] is what the system looks like at time 1, etc.
status[] should be a property of the object ourSystem.


OK.  We start out with all servers available.
Our time period is short enough so that only one client can arrive in a given time period, and that happens with probability 0.85

When a client arrives you will assign that client to the first available server (that is to a server whose doneAt is less than or equal to the current time.), and update the doneAt property for that server.  

Obviously you will need a function to scan the servers and find the first available one.

If no server is available then the client gets on line--- so you need a variable which keeps track of how many people are on line.

Run the simulation for 20 time periods.

AFTER you are done:
If you want to see a less visual version, there is one at http://web.simmons.edu/~menzin/CS101_Site/queue_model/ <http://web.simmons.edu/%7Emenzin/CS101_Site/queue_model/> 


