

GET and Post updated 10/18/16
Goals for this topic:
· You will understand and be able to explain the difference betewen GET and POST
· You will understand which to use when
· You will be able to read a URL-Encoded link and know how you can encode the information for a GET (i.e. what function is used)
· You will have understand the outline of how a GET is handled by the server
· You will have understand the outline of how a POST is handled by the server
· You will be able to import the CGI module and use the param() function to access the keys and values which are sent to a perl script. (NOTE: The parma() function handles both GETs and POSTs so it greatly simplifies handling data sent to a perl script by a form.)

Please note that this module provides additonal information for those students who have taken the Networks course or who are curious about “looking under the hood.” Other students might be just browse through that material.

GET and POST – we begin
When you communicate between a user’s machine (the client) and the server, the user will send information to the server using either GET or POST.
You have seen the method being specified in the method=….. attribute of a form.
How the get works
When you send the information by get the information is appended to the end of the URL which holds the script that will handle your data.
For example if I search in Google for Simmons College, after I hit the search button the following url will appear:
http://www.google.com/?hl=en&q=Simmons+College
Here, everything after the ? is information which is sent from the search page.
This information consists of two key-value pairs.
The first pair is hl=en The key is hl (which stands for home language) and you can see that its value is en (for English).
Then there is an & which signals the start of the next key-value pair.
The second pair is q=Simmons+College. The key is q (which is the id for the search box on the google site). The value is Simmons+College. You can see that here the blank space between Simmons and College has been replaced with a + sign.

There are certain characters (such as blank spaces) which may not appear in a URL and they are replaced by either their ASCII equivalent or another symbol which is allowed.

You can see that there are three parts to constructing the URL which is sent to Google. First all the form elements get turned into key=value pairs, where the key is the id for the form element. Then any illegal characters are replaced by other characters. Finally, the whole thing is appended to the end of the script’s URL, starting with a ? and separating all the pairs with an &.

Turning a string into something which may be sent as part of a URL is called URL-encoding and there are functions in JavaScript which will do it for you.
It happens automatically when you use a form and a submit button.
http://meyerweb.com/eric/tools/dencoder/ will encode/decode anything for you and there is some general information at http://www.w3schools.com/tags/ref_urlencode.asp should you be curious.
[bookmark: _GoBack]As you can see, all the information you are sending it available in the URL, so this is completely inappropriate for any privileged information, including passwords.

There is also a limit on the length of a URL. It used to be 256 charcters but it is now it is browser-dependent. IE is just over 2,000 characters and some others are higher. So the length limit is no longer important but the public nature of the information being sent is important.

How the post works
When you send information with a post, the key—value pairs are put into the body of the http message. This adds a little complexity, as you need to know how long the message is so that you make sure you get all the pairs, but it is a much more secure method.
Please read the really excellent
http://www.diffen.com/difference/Get_vs_Post

What does the script on the server do?
Whether you use a get or a post, the script on the server must extract the key-value pairs, process the information, and the send back to the client a new page.
There are slightly different methods for extracting the data, depending on whether the get or post method was used. Fortunatley, perl (and other languages used for server-side scripts – including php, python, java and node.js) has built in functions which will do this for you easily.
There are 3 sections below:
· the first explains what the script needs to do with a GET
(if you don’t use CGI)
· the second explains what script needs to do with a POST
(if you don’t use CGI)
· the third explains how to use the CGI module and avoid the coding in the first two sections.
 A Script which handles both GETs and PUTs will be found at the end of this document.

You should read the rest of this description so that you understand the basic steps, even if in programming you will use the CGI module and let the param() function do the hard work for you. (That’s what modules are for!)

The server script and GETs – an outline of the steps
1. Check the method that was used to see that it was a GET

2. Look in the built –in variable ‘QUERY_STRING’.
QUERY_STRING holds the name=value pairs (that is, it holds everything after the ‘?’ in the encoded URL.)
We put the contents of that string into a local variable – which we’ll call it $myData.
Note: QUERY_STRING is part of the envirnoment – you get it automatically.

3. Using the split() function which is built into perl, split up $myData at the
&’s and put the results into an array – we’ll call it @name_value_array
Each entry in this array is a string of the form: someName=someValue

4. Now we go thru this @name_value_array and one entry at a time we:
a. Split() it at the = to get ahold of someName and someValue
b. Do a little work on someKey and someValue to replace +’s with blank spaces, and turn any non-alph-numeric (URL encoded) part, such as a punctuation mark, back into its original character.
c. We take the nicely cleaned up someName and someValue and make it the next entry in an associative array or hash. In the example at the end of the is docx that hash is named %form_data.

5. Now you have all the data from the form in %form_data and you can process it as needed.

The server script and POSTs – an outline of the steps
 These steps are the same as for the GET, except for steps 1 and 2.
1. Check the method that was used to see that it was a POST

2. Look in the built –in variable ‘CONTENT_LENGTH’. It holds the obvious value (the amount of content you want to read in bytes), so you read in that number of bytes from STDIN, the standard input file, and put
that string into a local variable – we’ll call it $myData.

3. Using the split() function which is built into perl, split up $myData at the
&’s and put the results into an array – we’ll call it @name_value_array
Each entry in this array is a string of the form: someName=someValue

4. Now we go thru this @name_value_array and one entry at a time we:
a. Split() it at the = to get ahold of someName and someValue
b. Do a little work on someKey and someValue to replace +’s with blank spaces, and turn any non-alph-numeric (URL encoded) part, such as a punctuation mark, back into its original character.
c. We take the nicely cleaned up someName and someValue and make it the next entry in an associative array or hash. In the example at the end of the is docx that hash is named %form_data.

5. Now you have all the data from the form in %form_data and you can process it as needed.

How to use CGI to handle both GETs and POSTs
 Start your script with:

 #!/usr/bin/perl
 use CGI qw(:standard);

 Then later you may use the param() function to get values:

 $myOwnPerlVariable = param(‘whateverTheValuewasNamedInTheForm'

 Example:
 If the form on your HTML page had
 <input type = ‘text’ name = ‘nickname’
 value = ‘Please enter your nickname’>
 <input type = ‘text’ name = ‘favePet’
 value = ‘What is the name of your favorite pet?’>

 Then -once you have told perl to use the CGI module - your perl script
 could get these values by coding:

 $myNick = param(‘nickname’)
 $myPet = param(;favePEt’)

 Pretty easy, isn’t it!
 NOTE: Usually you grab and process these values before you decide what
 send back as the next HTML page --- see the PerlScriptTemplate in this
 folder.

The excerpts below provide more detail for those who are interested..
Other references are in the Get, Post, and Perl References and on the Web Centric Resources page.
If you have had the Networks course then you should read the items in section 1 of the References docx.

THIS COMES FROM ABOUT.COM’s site and various links under perl

GET
=======
<FORM ACTION=
"www.mydomain.com/cgi-bin/myscript.cgi" METHOD=GET>
...
</FORM>
=======
This is done by adding a question mark after the URL, and transmitting the data in name/value pairs. The 'name' is the named element in the form, such as a text box, and the value is the data input. For instance, data in a text box named 'Name' would be transmitted to a script as follows:
=======
http://www.mydomain.com/cgi-bin/myscript.cgi?Name=MyName

	Reading CGI Data From Perl Scripts

	[image: http://images.about.com/all/bullets/dot_clea.gif]

	Environment variables are spawned by the server

	[image: http://images.about.com/all/bullets/dot_clea.gif]

	
	

	
	[image: http://images.about.com/all/bullets/dot_clea.gif]

			 More of this Feature

	• Part 2: GET/POST
• Part 3: Decoding form data
• Part 4: Example code

	[image: http://images.about.com/all/bullets/dot_clea.gif]

	[image: http://images.about.com/all/bullets/dot_clea.gif]

	[image: http://images.about.com/all/bullets/dot_clea.gif]

		 Related Resources

	• Understanding Environment Variables

	[image: http://images.about.com/all/bullets/dot_clea.gif]

	[image: http://images.about.com/all/bullets/dot_clea.gif]

This Perl tutorial will show you how to write code to handle the data passed to your script from a form. Please note that although it's a good thing to know how to do, it's not necessarily the method of choice. There are easier ways to do it, such as using Perl's CGI.pm module. But I believe that if you understand how things work, you'll write better code. So let's see how data gets passed from a form to your Perl script, and learn how to process it.
Environment variables
Environment variables are predefined, assigned values created when the server spawns the requested CGI script. Note that this is part of the CGI transaction, and will happen regardless of the language you use for your CGI script. This tutorial relates to Perl, but environment variables are also available in other languages, such as PHP. In addition to the standard variables specified by NCSA, your server may add additional variables which may be of interest to you. Check your server documentation if you'd like to know more about them.
There are two methods defined for sending data from a browser to a server via CGI. They are GET and POST, and they are specified in the <FORM> tag as shown below.
<FORM ACTION="www.hostname.com/some_script.cgi" METHOD=GET>
...
</FORM>

- or -
<FORM ACTION="www.hostname.com/some_script.cgi" METHOD=POST>
...
</FORM>
Both methods send form data to the server, but in different ways. Your script must therefore be able to detect which method was used, and then handle each case in the appropriate manner. Let's take a look at how it's done.

Next Page How to use GET and POST to pass form data to a Perl script > Page 1, 2, 3, 4

	[image: Your Guide, Emmie Lewis]
	From Emmie Lewis,

	

	

Reading CGI Data From Perl Scripts [image: http://images.about.com/all/bullets/dot_clea.gif]How to use GET and POST to pass form data to a Perl script [image: http://images.about.com/all/bullets/dot_clea.gif][image: http://images.about.com/all/bullets/dot_clea.gif]
		 More of this Feature

	• Part 1: Introduction
• Part 3: Decoding form data
• Part 4: Example code

	[image: http://images.about.com/all/bullets/dot_clea.gif]

	[image: http://images.about.com/all/bullets/dot_clea.gif]

	[image: http://images.about.com/all/bullets/dot_clea.gif]

		 Related Resources

	• Understanding Environment Variables

	[image: http://images.about.com/all/bullets/dot_clea.gif]

	[image: http://images.about.com/all/bullets/dot_clea.gif]

In this case, data is sent to your script using the QUERY_STRING environment variable. However, the information must be first be packaged into a string that can be safely passed to the server as part of the URL. In this case, safety does not refer to security issues, but how to pack up data into one string without any spaces. The term for this is URL encoding. How is it done?
The data is packaged into name=value pairs, and then the entire string is encoded. First, any spaces in the string are replaced with '+'. Second, punctuation characters are replaced by %xx, where 'xx' is the hexadecimal value of the character in the ASCII character set. If you have more than one element in your form, the data will still be sent in name=value pairs, but each pair will be separated by '&'. Fortunately your browser will do all of this for you. However, if you want to call your script without a form, you can append the '?' to the URL and encode the data yourself. Be aware that coding complicated data by hand is an error prone way to get things done. It's a lot easier to let your browser do the work.
For example, suppose you have a form like this,
<FORM ACTION="www.hostname.com/EnvVars.cgi" METHOD=GET>
<INPUT TYPE="text" NAME="TextBox" SIZE=30 MAXLENGTH=50>
<INPUT TYPE="submit" VALUE="Submit">
</FORM>
This is a form with one text box and a submit button. When information is typed into the text box and submitted, the browser will append a '?' to the URL and whatever follows it will be found in the QUERY_STRING variable. For example, say your web page resides at
http://www.hostname.com/test.html

Now, type your first name into the text box and press submit. The URL will now look like this:
http://www.hostname/cgi-bin/EnvVars.cgi?TextBox=firstname
The browser added '?' to the script you specified in ACTION="" and automatically packaged the text in the box for you. If you type your first name and your last name, the URL would look like this,
http://www.hostname/cgi-bin/EnvVars.cgi?TextBox=firstname+lastname
and if you got creative and typed "Hello World!" it would look like this,
http://www.hostname/cgi-bin/EnvVars.cgi?TextBox=Hello+World%21
There is another way to send data using METHOD=GET. There is another environment variable called PATH_INFO that is normally used to send path information to your script. However, you can use it to pass information as well. One case where this may be used is if you have a counter script that keeps track of different pages. To use it, add '/' after your script name, and then type the value.
http://www.hostname/cgi-bin/EnvVars.cgi/PathInfo
You can also append '?' after the path information. Just be sure that it follows the PATH_INFO data, or it will all be considered part of QUERY_STRING. If you'd like to see all of this in action, try the generic Form Analyzer script. Try this link for starters, and look for the QUERY_STRING and PATH_INFO variables to verify the values.
http://www.speakeasy.org/~cgires/perl_form.cgi/PathInfo?QueryString
Type in some of your own test data using the information I've given, and you can see all the environment variables printed out for you.
As you can see, using METHOD=GET is a straightforward way to send information to your script. However, there are some disadvantages. The first is that there is a fixed length on the string you can send. Although it varies, 256 is a common limit. However, it may be shorter on some systems so don't count on that length. Another disadvantage is that the URL that calls your script is often collected in the server's access logs. This includes any information passed in PATH_INFO and QUERY_STRING. Having your hits included as public information may be OK, but most of us would balk at having data exposed to the world at large.
Speaking of logging, if you want to keep track of each request made to your script, be aware that METHOD=GET is idempotent. That's just a fancy way of saying that several identical GET requests may be treated as one request, since browsers and proxies can cache the information. If you're trying to keep track of each request use METHOD=POST.
Using METHOD=POST
This method was developed to answer the limitations of using GET, and it is now the most common and recommended method. Your data will not be reported in the server logs, and for practical purposes there isn't a limit. There may be an absolute limit, but unless you're sending large chunks of data, you won't have to worry about it.
Information sent via POST doesn't reside in environment variables, but is sent to the script's STANDARD INPUT. To read data from STDIN, use the read() function. Because the length of the data is variable, you'll need to look at another environment variable: CONTENT_LENGTH, in order to use this function properly. Browsers set this value when they send the data string. You'll have something like this in your script:
How long is the data string?
$data_length = $ENV{'CONTENT_LENGTH'};

Read in the string
$bytes_read = read(STDIN, $my_data, $data_length);
The information from your form will be in $my_data.

OK, so now you have your form properly written, and the CGI data properly passed to your Perl script. Now the data has to be decoded in order to be used. How is this done? The easy answer is to use someone else's code, like ReadParse(), cgi.lib, or CGI.pm.
But it's easy to write the script code to read CGI data in Perl. Once you've determined the method used to send the data, you use standard Perl functions and hashes to decode the CGI data string. Let's take a look at the nitty-gritty details so we can understand the process.
The first step is to determine which method was used to send the data to our script. Once we know that, we can use the correct method to access it.
The first thing we'll have to do is to write code that
can read CGI data no matter what method was used to send
it. First we'll have to check to see which method was used.
If it was GET, then we'll look at QUERY_STRING, otherwise
we'll need to look at CONTENT_LENGTH to use read().

if($ENV{'REQUEST_METHOD'} eq "GET"){
 $my_data = $ENV{'QUERY_STRING'};
}
else {
 $data_length = $ENV{'CONTENT_LENGTH'};
 $bytes_read = read(STDIN, $my_data, $data_length);
}
Now that we have our data, let's assign it to an array for our script to use. We'll use the split() function to break up the string, using the ampersand character '&'. Remember that '&' separates the name=value pairs in the data.
Let's load it into something we can use
@name_value_array = split(/&/, $my_data);
Now that we have the data in an array, we can loop through it to extract the name=value pairs, decode them, and stuff them into an associative array that our script can use.
Here's where we do the actual work. We're going to cycle
through @name_value_array to decode the name=value pairs
foreach $name_value_pair (@name_value_array) {
 # Split the name=value pair in your HTML form data
 ($name, $value) = split(/=/, $name_value_pair);
Great! Now we have to replace any '+' characters with a space ' '. Remember that you can't send a space character in a URL, so they're automatically replaced. We are responsible for putting them back in where they're supposed to be. We'll use 'tr///', which is the transliteration operator. It looks for characters between the first set of slashes, and replaces them with the character(s) in the second set.

 # Now, replace '+' with ' '
 $name =~ tr/+/ /;
 $value =~ tr/+/ /;
The next step is to translate any hexadecimal values back into the characters they represent. For this step we'll use both the substitution operator, and the pack() function. The substitution operator 's///' is used with regular expressions, and won't be covered here. The pack() function takes a list of binary values and evaluates them however you want.
Remember that when you name a variable and assign it a value, everything you read or type is in a form you can understand. That's for your convenience. The computer doesn't care what you see or mean, it handles everything as bits and bytes. When you use the pack() function you tell the computer you want to see a binary value as an ASCII character, or an integer, or a single precision floating point number, or whatever. We want to see them as unsigned character values, so we'll use 'C', which is a special code that pack() understands. If we wanted to see the hex values as a uuencoded string, we'd use 'u'. Please see the documentation for pack() if you'd like to learn more about it.
 # Next, we'll translate any hex values back into characters
 $name =~ s/%(..)/pack("C",hex($1))/eg;
 $value =~ s/%(..)/pack("C",hex($1))/eg;
At this point, our name=value pairs have been decoded into their original form. Now we can put them into a hash that our script can use. Since $name corresponds with a specific form element, we'll use that as the index. That way, if we want to access the value in, say, a textbox, we can do that with
$first_name = $form_data{'first_name'};
Here's how to do it
 # Finally, we'll load the variables into an associative array
 # so we can use it when we need it.
 if($form_data{$name})
 {
 $form_data{$name} .= "\t$value";
 }
 else
 {
 $form_data{$name} = $value;
 }
}
What are we doing here? Well, the code will see if $form_data{$name} already exists in the hash. If it does, it will append the next $value to the string. This can happen if you're using form elements like a scroll box that supports multiple elements. If $form_data{$name} doesn't exist, it'll be added to the hash as just another element. In the example, I used a tab character ('\t') to delimit the values. You have your choice of what to use, though. All you're trying to do is keep the values separate until you need them later in your script.
Note that this point is frequently overlooked in both Perl tutorials and scripts that are available on the internet. If you're using form elements with multiple associated values, be sure and check to see that they're being handled properly.
So that's how you read CGI data. I've included the source for this example on the next page. The script is generic and will be able to handle data from any form. However, do take a look at some of the other alternatives mentioned above, such as CGI.pm. When you're learning a new language, it's important to write lots of code in order to understand how things are done. But don't overlook the value of a good, well-tested library. It'll save you a lot of time in the long run.
A script which handles both GETs and PUTs
Here's the script that reads and parses CGI data.
#!/usr/local/bin/perl

#===============================
Read and Parse CGI Data
Copyright 1999-2001, Emmie P. Lewis
Created 05/11/99
#===============================
This script is designed to show
how to read and parse CGI data
#===============================

print "Content-type: text/html\n\n";

The first thing we'll have to
do is to write code that can read
CGI data no matter what method was
used to send it. First we'll have
to check to see which method was used.
If it was GET, then we'll look at
QUERY_STRING, otherwise we'll need
to look at CONTENT_LENGTH to use read().

if($ENV{'REQUEST_METHOD'} eq "GET"){
 $my_data = $ENV{'QUERY_STRING'};
}
else {
 $data_length = $ENV{'CONTENT_LENGTH'};
 $bytes_read = read(STDIN, $my_data, $data_length);
}

Let's load it into something we can use
@name_value_array = split(/&/, $my_data);

Here's where we do the actual work. We're going to cycle
through @name_value_array to decode the name=value pairs
foreach $name_value_pair (@name_value_array) {
 # Split the name=value pair in your HTML form data
 ($name, $value) = split(/=/, $name_value_pair);

 # Now, replace '+' with ' '
 $name =~ tr/+/ /;
 $value =~ tr/+/ /;

 # Next, we'll translate any hex values back into characters
 $name =~ s/%(..)/pack("C",hex($1))/eg;
 $value =~ s/%(..)/pack("C",hex($1))/eg;

 # Finally, we'll load the variables into an associative array
 # so we can use it when we need it.
 if($form_data{$name})
 {
 $form_data{$name} .= "\t$value";
 }
 else
 {
 $form_data{$name} = $value;
 }
}

Now print out the data to verify that it's correct.
foreach $form_data_key (keys(%form_data)) {
 print "$form_data_key = $form_data{$form_data_key}
";
}

#===============================
#===============================

image1.png

image2.png

