Introduction to the DOM
DOM stands for Document Object Model
The top level is the browser and it has properties (which themselves are objects)
· Navigator
· Window
· Location
· History
· Screen
See http://w3schools.com/jsref/default.asp for details.

Next level is the window object
· It has methods such as open(), alert () and close()
· The window object is understood so we don’t need to write window.alert(), just alert()
· One of the properties of the window object is the document, which is itself an object.
In other words, we could picture this as:
 browser
 |
 |

 | | | | |
 | | | | |
navigator window location history screen
 |
 |
 document

In the document object
· The browser generates an array to keep track of each of the following in your document object:
· anchors[]
· images[]
· links[]
· forms[]
· Notice that all these arrays are named with lower case letters and are plural words.

· For example, the very first image on your page is
 window.document.images[0]
but since window is always understood, you may also identify it as
 document.images[0]

If you want to know the src of that image you may refer to it as
 document.images[0].src

· If you have lots of images, forms, etc. it is more convenient to name them.
 For example, if your very first image has the id =’myLogo’ then we may refer to it as
 document.images[“myLogo”]
and its src is
 document.images[“myLogo”].src

· Just as document.images[] keeps track of all your images,
document.forms[] keeps track of all your forms,
document.links[] keeps track of all your links, and
document.anchors[] keeps track of all your anchors.

For each form object there is an array called elements[] which keeps track of all the elements (text boxes, check boxes, etc.) in your particular form.

Suppose your page has several forms with the id’s of id=’basicInfo’ and id=’privatetInfo’ and suppose that the privateInfo form has a text called id=’SocSecNum’.
Then we may refer to that value as
 document.forms[“privateInfo”].elements[“SocSecNum”]
which is much easier to follow than using numerical indices in forms[] and elements[]

Most objects have methods and attributes and event handlers.
A list of the event handlers which may be associated with various tags is found at
http://w3schools.com/jsref/dom_obj_event.asp
In addition, the objects often have methods, attributes and event handlers which are specific to that type of object. For example, the document has onload and onunload event handlers.
As you know, an event handler is a bit of JavaScript code which goes into the tag of an object and is triggered by the event ocurring. For example:

When a user clicks on the image the event happens and the event handler is fired.

Whatever is in those quotes is what is executed. (It may be a function call.)

The document object comes with four very useful methods:
· document.getElementById() returns the element with the id named in quotes
· document.getElementByName () returns the element with the name given in qutoes
· document.getElementsByTagName() returns an array of all elements with the specified tag.
Notice that Elements is plural in the name for this method – because ireturns a whole node list of elements.
Node lists are similar to arrays, in that you can iterate through them, but they don't have associated methods like sort().
For example, getElementsByTagName(‘h1’) returns an node list of all your h1 headings.
· document.querySelector() allows us to use the same selectors as in CSS to retreive nodes.
· You will see very soon, when we start on jQuery, that there are easier ways to get ahold of specific nodes in your DOM, and that we can even be more detailed about which nodes we want.

The discussion below will be simpliied with jQuery.
If I want to do a lot of fancy manipulation (e.g. change the size or src of an image) it is pretty common to see code like:
 myCity=getElementById(“homecity”);
 myCity.src = …… etc.
If you want to do some string manipulation on what the user filled into the lastName and maidenName text boxes in the basicInfo form, then you can write code like:
 Ln=getElementById(“lastName”)
 Mn=getElementById(“maidenName”)
 if (Ln.toUpperCase()==Mn.toUpperCase()) { .. }
Remember that id’s should be unique! If you have objects buried inside objects buried inside objects, then by using getElementById() you can grab it, assign it to a variable, and then you’re off and running using the variable to access the attributes.

WARNING: Images are a little trickier --- as we saw in Chapter 3. In particular, using blue for images defined in img tags and using purple for images defined with the new Image constructor:
· images defined in tags go in the images[] array

· images defined with constructors as var moon = new Image() do NOT go in images[] because they have not yet been attached to the DOM.

· images defined in tags belong to the document, so the right way to refer to them is as document.logo or document.images[“logo”], and their source attribute is document.logo.src or document.images[“logo”].src

· images defined in variables are referred to the way we always do for variables – e.g. in the above case as moon or moon.src

· images defined in variables may NOT be sent to a document.write() but may be used to swap src files associated with image tags, or, using jQuery we may attach them to the DOM (document).

· You can document write either an entire img tag or a document.image_name.src:
BTW notice the use of both single and double quotes here to distinguish between an outer and inner quote.
.
WARNING: For XHTML documents, there is more structure and more methods for mainuplating the objects.
When we get to jQuery, you will see how jQuery manipulates the DOM with ease.
Some simple examples of DOM manipulation are at http://www.w3schools.com/htmldom/dom_examples.asp but we will get fancier with jQuery.
