Class by Class Assignments for Chapter 13

In this Chapter we turn to "Mobile First" design and "Responsive Web Design" (RWD), and implement RWD with CSS Grid.

"Mobile First" design advocates starting your design by creating the site for cell phones first, and then expanding it for larger screens. When you create a site for a small screen you need to think carefully about what is critical, and what is expendable.

"Responsive Web Design" (RWD) refers to web design that works well on a variety of devices and screen sizes.

The impetus for both of these efforts is the huge increase in the variety of devices (from smart phone to desktop) and the huge popularity of some of the smaller devices.

· Assignment 0 – Mobile First and General User Interface Design
Luke Wroblewski has written an older but wonderful book Mobile First
https://learning.oreilly.com/library/view/mobile-first/9780133052893/part1.html
Please
· Skim Chapter 1 (I don't need to tell you that cellphones and small devices are important)
· Read Chapter 2 about constraints
· Skim Chapter 3 about capabilities – we are going to focus on designing sites which work for both mobile and standalone devices – so you can't assume you have an accelerometer, etc.
· Read Chapter 4 about getting rid of the 'fluff' and focusing on the essentials.

As we turn our attention to Mobile First Design, this is a good time to think about how users interact with our web sites. (Note: There are, of course, some sites which are never used on a phone. The issues of how users interact with our sites is important for both mobile and desktop applications.)

Look at the home page for Simmons on both your laptop and your phone. Does it focus on the essentials? Repeat for the course registration page on Workday.simmons.edu

In Chapter 6 of the course (in Unit 2 at http://web.simmons.edu/~menzin/CS321/Unit_2_JavaScript_and_HTML_Forms/Chapter_6_Page_and_Site_Design_and_Usability/)
· Read the "Issues in Interface Design."
· Suppose you were given the task of re-designing the interface for the Directories at Simmons. Directories allow you to find people (e.g. by name) and offices (e.g. MCS or the CS Program or Academic Advising or the Provost's Office).
You will discuss your solution with your small group in class and also work on an interface for course registration.

 Now go back to Chapter 6 and read "User Interface Design"
 What methods of interacting with the interface would you like for
· Browsing courses for registration?
· Adding courses to your plan for next semester?
· Navigating a 2U course site?
· Investigating flights from Boston to L.A., given some flexibility about dates and some possible cost constraints, and number of legs on the trip?

· Assignment 1- Responsive Web Design and CSS Grid
This assignment is divided into two parts – first my quick and dirty introduction to RWD and such matters as media queries, viewports and breakpoints.
Second, the more time-consuming but very important tutorials on CSS Grid, which is a way to implement RWD.
My quick and dirty introduction:
· Please read https://developer.mozilla.org/en-US/docs/Learn/CSS/CSS_layout/Responsive_Design This article will explain what you are likely to encounter, especially in older sites.
· As the MDN article points out, using a flexible grid system, such as CSS Grid, will make your pages inherently responsive.
That said, it is fairly common to arrange your page differently for print, to include more images based on the screen size, etc. The key to doing this is media queries. A media query allows you to have different style sheets for different types of devices.

· There are two common types specifications in media queries :
· The first is about the kind of media the devise expects (print, screen, speech, all. The media type 'speech' replaces 'aural' which is now deprecated.)
· The second is about the size of the screen.
· These conditions can be connected with and, or, not.

· Since media queries are about style sheets (but style sheets on steroids as you will see) you shouldn't be surprised to learn that you can either embed them directly on you page or link to external files with each style sheet.
· When the media query is coded directly on your page it looks like:
@media some rule specifying the condition { the style sheet }.
Look at http://web.simmons.edu/~menzin/CS321/Unit_7_Mobile/Chapter_13_ResponsiveWebDesign/demos/rwdScreenSizeDemo.html and see what happens as you change the size of the window. Then look at the code to see several @media rules, which make it happen.
· When the styling is stored in separate files (as you might do when you were styling a large site) then we code
<link rel="stylesheet" type="text/css" media="only screen and (max-device-width: 780px)" href="max-device-width-780px.css" />
You will also sometimes see the @import rule to import part of a style sheet. This must go right after the meta tag – details can be found at https://developer.mozilla.org/en-US/docs/Web/CSS/@import
· So, what do you need to know?
· You should start by deciding what your mobile design should look like. Then add more features or tablets and then for laptops. You can use media queries and breakpoints (see below) to hide images or other features from small screens.
You can also use CSS Grid to make your design responsive – i.e. move parts of the page around to accommodate different size screens. (See below.)
· A good over-view is found at the Intro, Viewport, and Media pages at https://www.w3schools.com/Css/css_rwd_intro.asp
· Read https://css-tricks.com/a-complete-guide-to-css-media-queries/ for an overview of media queries (don't worry about all the details in the yellow section.)
· At https://developer.mozilla.org/en-US/docs/Web/CSS/@media browse the sections on Accessibility and on Formal Syntax.
· The viewport refers to the screen size. (More below).
· There are very common "breakpoints" where people change the styling. You can find this at https://www.browserstack.com/guide/responsive-design-breakpoints and that page also points out that one might hide/show different elements for different size screens. (For example, one might have classes which delineate which images are hidden on small screens and implement that by how you style those classes in the style sheet for small screens.)
· If you are using breakpoints, there are some useful resources (browse very casually):
· http://css-tricks.com/snippets/css/media-queries-for-standard-devices/
· Next, there is excellent advice about the use (and not over-use) of breakpoints at http://bradfrost.com/blog/post/7-habits-of-highly-effective-media-queries/ That said, you may need to use them.
· There is a breakpoint plug-in for jQuery, with a very clear description at https://github.com/hejmartin/jquery-breakpoint (also accessible from http://plugins.jquery.com/breakpoint/)
Basically, the plug-in monitors some condition and changes things when that condition becomes true or false. This could be very useful if, for example, you are monitoring the orientation of a tablet or smartphone. Start at http://plugins.jquery.com/breakpoint/ and follow the links at the right side to the documentation and download.
There is also a breakpoints-js plug-in which adds classes to your elements based on breakpoints. See http://plugins.jquery.com/breakpoints-js/ and description at https://github.com/reusables/breakpoints.js

· Back to the viewport. the viewport refers to the screen window.
RWD often begins with

 <meta name = “viewport” content = “width = device-width” initial-scale=”1”>

This sets the size of the viewport (the screen real estate you will be working with) to be that of the device, and sets an initial level of how far you have zoomed in.
This is not a w3c standard, but it is a de-facto one.
Eventually you will want to read the details at https://developer.mozilla.org/en-US/docs/Mozilla/Mobile/Viewport_meta_tag

· The default font-size for all browsers is 16 points. All of them.
This is another de-facto standard that is not a w3c standard.

· CSS pixel refers to the pixel size you may specify in a style sheet --- and not the actual, physical pixels on a device (which depend on such things as pixel density.)
If you wish to, you can learn more about this at Peter-Paul Koch’s article “A pixel is not a pixel is not a pixel”. http://www.quirksmode.org/blog/archives/2010/04/a_pixel_is_not.html

 On to CSS Grid. Remember: CSS Grid designs are intrinsically responsive.
· Start here: The terminology: https://hacks.mozilla.org/2017/10/an-introduction-to-css-grid-layout-part-1/

· Now two basic tutorials – do one of them
· This is a 3-part series by Rachel Andrew, the great guru of CSS grid. (Rachel Andrew was Editor in Chief of Smashing Magazine for many years. If you are interested in high end CSS coding it is worth getting a free subscription to Smashing Magazine.)
https://www.smashingmagazine.com/2020/01/understanding-css-grid-container/ The links for parts 2 and 3 are in part 1.
or
· https://www.youtube.com/watch?v=jV8B24rSN5o&t=10s Brad Traversy on 28 minute crash course on CSS grid.

· Next you want to see a little more depth – please read
· https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Grid_Layout/Basic_Concepts_of_Grid_Layout and the associated https://developer.mozilla.org/en-US/docs/Tools/Page_Inspector/How_to/Examine_grid_layouts

· Apply this with one of these:
· https://www.youtube.com/watch?v=M3qBpPw77qo
· the tutorials through the one on responsive design at https://webdesign.tutsplus.com/series/understanding-the-css-grid-layout-module--cms-1079
· https://www.youtube.com/watch?v=68O6eOGAGqA (which assumes a little more CSS)

