Basic concepts from CSS Grid
1. display: grid and display: inline-grid
See the start of https://www.sitepoint.com/creating-css-grid-layouts/

2. ways to measure length
rem is the width of a capital M in the root element (typically the <html> tag.)
The many units are described in https://www.freecodecamp.org/news/css-unit-guide/
We will use em, rem, px, and fr.
Fraction or fr is defined at https://hacks.mozilla.org/2017/10/an-introduction-to-css-grid-layout-part-1/

3. Grid columns, rows, cells, areas, lines and gutters – all defined at https://hacks.mozilla.org/2017/10/an-introduction-to-css-grid-layout-part-1/
You set the size of the gutters with grid-gap.

4. Templates: Are easily set with the grid-template-rows and grid-template-columns attributes. Each of these is followed by a description of their tracks.
See any of the basic tutorials such as those at https://www.smashingmagazine.com/2020/01/understanding-css-grid-container/ or https://www.youtube.com/watch?v=jV8B24rSN5o&t=10s

5. Use of fr, repeat(n, some pattern using fr)
Note: We find simple ratios (such as ½, ½ or 1/3, 2/3) most visually appealing.
Use of minmax(some minimum value, some max value or auto)
More advanced settings include min-content, max-content, auto-fill and auto-fit (See the first of the Smashing Magazine tutorials).
You can also make the rows in the implicit grid be grid-auto-rows

6. Placing elements with grid lines- e.g. grid-column a/b where the you are counting the vertical grid lines starting with 1 in the left margin. Here you give the vertical lines which define the left and right margin of the element. Likewise grid-row c/d.
This allows you to overlap elements – and also to place them where you want (not nec. the order in which they are defined!)
You can also give names to your grid lines – putting the names in square brackets. So for vertical lines you might name them [lefft-line] 1 fr [end-left-sidebar] 3fr [start-right-sidebar] 1fr [right-line].

7. Explicit and implicit grids.

8. In addition to grid columns and rows (and their generalization tracks) we have grid areas & we can name them using grid-column-start, grid-column-end, grid-row-start, grid-row-end or the grid-row a/b and grid-column c/d above or grid-area a/c/b/d

9. Grid areas and named grid lines can get hairy when you use repeats. For our puposes, it is better to give each area a distinct name.

10. Look at https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Grid_Layout for the essential pieces:
 A div with a wrapper class to hold the whole thing
 All the other pieces are divs inside the big div and they have their own classes so you can
 place them.
 The wrapper class (i.e .wrapper { }) has display:grid and also defines the number of
 columns, their size, the gap and the height of the rows.
 The classes for the smaller divs defines how many rows they span or defines their
 placement in terms of lines or areas (& any additional styling)
 As you see in the 4th entuts tutorial you can use @media to have different layouts (styles)
 for different breakpoints. – for example work thru together the code at
 https://webdesign.tutsplus.com/tutorials/css-grid-layout-going-responsive--cms-27270
 which is displayed at https://codepen.io/tutsplus/pen/mAOzVq/

Exercise:
1. The hard part is deciding what do put on the small screen.- see RWD exercise.

Write a small screen layout with a header and a footer and simple nav which opens when you click on the ≡ icon.

 Now convert it to a large screen layout with the nav at the side.

2. Produce something like:
	Blah blah
	Even more and more
	Blah blah

	Blah blah
	xxxxxxxxxxxxxxxxxxxxxxxxxxx
	
	Blah blah

	Blah blah
	xxxxxxxxxxxxxxxxxxxxxxxxxxx
	
	Blah blah

	Blah blah
	xxxxxxxxxxxxxxxxxxxxxxxxxxx
	
	Blah blah

	Blah blah
	xxxxxxxxxxxxxxxxxxxxxxxxxxx
	
	Blah blah

3. Produce something like the 5th design (the one with one empty spot) at https://webdesign.tutsplus.com/series/understanding-the-css-grid-layout-module--cms-1079
Use a media query so that below 700px it converts to the left 2 columns, followed by the right two columns.

Reminder about tools
You can inspect the grid in Firefox – see https://developer.mozilla.org/en-US/docs/Tools/Page_Inspector/How_to/Examine_grid_layouts
In Firefox you can use the Web Developer Toolbox (ctl+shift+I) or look at the page in Responsive Mode (ctl+shift+M).
In Chrome, the lower panel will show you the breakpoints (& event listeners.)
