
Practice with modules in Node
In this folder we will have a series of exercises of increasing complexity that develop our skills on how to extend modules, including the use of events.

1. Write a module pets.js which has two key-value pairs in the object it exports.
The keys for them should be adoptCat and adoptDog and the values for those keys should be (constructor) functions which instantiate new cats and dogs.

The constructor functions should have parameters for the pet’s name and year of birth and should have a least a talk method which prints the appropriate sound.
You may add other parameters and methods if you wish.

Now write an app which requires pets.js and use it to adopt one cat and 2 dogs and to console.log information about your pets and has them ‘talk’ (a function).

One possible solution is in eay_pets1	

2. A lot of the work you did for the exercise above is redundant. It would make sense to have a module pet.js which has generic information about a pet --- name, birth year, species, the sound that species makes, and a talk method.
The values for species and species_sound are placeholders. So, of course, for a particular species you will override that species and its sound.

Next you want to write modules cat.js and dog.js which inherit from pet.js.
To do this you will need to require the core module util, which has an inherit method.
(Note: This is a legacy method, and Node.js recommends you use classes and the extend method instead, but the idea of building a module such as cat.js by inheriting from/extending pet.js is the same either way.)

One way to do this is to write a (constructor) function cat() which has the parameters you will need (name of pet, etc.) . Inside that function you will have the following code which uses your parameters and overrides specific values for your species. For example, I had a function adoptDog:

function adoptDog(name, birth, breed){
 pet.call(this);
 util.inherits(adoptDog, pet); //either here or after the functio
 //in Node docs this is after & outside the function-- but see note below
 //inherits brings in the prototype of pet, with its methods
 //we still need to set the values of the properties in pet, and
 //we still need to over-ride some generic properties, e.g. species, in pet
 this.species = 'dog';
 this.species_sound = 'woof';
 this.name = name;
 this.birth = birth;
 this.breed = breed;
 }

 Now your app can require the dog and cat modules and do its stuff.

 Possible solutions are in easy_pets2 (which was just to get the cat module
 working) and then in easy_pets2a and easy_pets2b. In easy_pets2a, the
 inherits method is inside the constructor function, which is not standard. In
 easy_pets2b the inherit method is in the standard place. Both apps work.

3. Suppose that in your app you want to respond to your pets. For example, when your dog talks you want to (console.log that you) open the door or provide a treat, and that when your cat talks you (console.log that you) check his water.

Go back to your pet.js file and modify the talk() method to include an event emitter and to add emitting a ‘pet_talk’ event.

You will probably need to add some data to the emit event so that your main app knows which pet is talking.

Of course, you can modify what the event handler does in the cat and dog modules, and you can even change what happens based on the pet’s age or the dog’s breed. Or you could modify what happens (in your app.js) for different pets. Finally, you could make the event handler be a parameter in the constructor function for dogs and cats.

See https://nodejs.dev/en/learn/the-nodejs-event-emitter/ for basic examples of using an event emmiter.

Then. please also see the document in this folder and on the chapter page “Event Handlers and Extending Modules”.

Possible solutions are in eay_pets3 and 3a. In easy_pets3 I have put the event handling inside the constructor function for the pet – you can still override it in cat.js and dog.js In easy_pets3a I have put the place_holder function outside the constructor function for a pet, but thanks to closures getting the whole context, it is still available and can be over-ridden (the same way we over-rode the value of species and of species_sound.)

 :

a.
