Regular Expressions
1. What are regular expressions? (regex or regexp)

Regular expressions give us a way to describe a pattern. They can be very simple or very complicated. We start with a simple one.

2. How to get a regular expression

In JavaScript there are two ways to get a regular expression.

Suppose you wish to look for the string bar in other strings. You may define:

var pat = /bar/

var pat2= new RegExp(‘bar’);

See regex.html
Please note:

· When you use the RegExp method the pattern you are looking for is enclosed in quotes

· Look carefully at the word RegExp and note the p at the end and the capitalization

· When you use the / / pattern bars you do not use quotes

In either case you get a new RegExp object.
3. What methods come with a regexp?

· test()
ans = myRegexp.test(anyString) looks in anyString to see if it can match the pattern described in myRegExp.

It returns true or false (here put into ans).

Remember that myRegExp will describe (not be) a certain pattern.
· exec()
ans = myRegExp.exec.(anyString) does the same kind of thing as test() above, but instead of returning true or false it returns an array with the matches or null.
So ans will be an array

If you have a complicated pattern there might be several strings which match it --- which ones actually does match is what gets returned and put into the elements of ans.

When there is no match, null is returned.
To get all the matches your regular expression must ask for global matches – see regex_v2.html
4. How to get all the matches

There is a global flag (g) which may be used to modify the results of your pattern matching attempt. Using the / / method the g goes after the pattern (and the / is an escape). In the RegExp object syntax the g goes in a second parameter inside quotes:

var patG = /bar/g;

var pat2G= new RegExp(‘bar’,’g’);

5. Can I use RegExp with Strings?

Yes! The following methods which belong to strings can take a regular expressions as their parameter: search () , replace(), and match(0.

· anyString.search(myRegExp) returns the index of the first match.

· anyString.replace(myRegExp, ‘surprise!’) replaces any pattern which matches the regular expression with surprise!

· anyString.match(myRegExp) works like myRegExp.exec(anyString) when the global variable is set--- and it is a method belonging to the string rather than to the regexp.
6. Are regex standard? Where do I find them

The regular expressions are fairly standard, but not completely. The syntax is quite old (it dates back to the 1950s and early UNIX) and has been widely adopted. For example, you can find it in JavaScript, Perl, PHP and Python.

There are slight variations in the names of the functions to find and replace strings, and Microsoft (of course) uses different wild cards. (Since you are not writing .Net applications that won’t be a problem now.)

Different versions of UNIX/Linux have slightly different regex --- and a good idea is to check out whatever platform you will be using.

That said, for the common and routine uses, regex are quite standard. And, of course, you test all your code anyway.
7. What fancy things can you do with a regex?
This is a place where you can get as fancy as you want. Here are some of the basic pieces of regex syntax:
i. Regex are case-sensitive
In JavaScript the ‘i’ flag will make it case insensitive:
Ex: pat=’/bar/gi’ or pat=new RegExp(‘bar’,’gi’) looks for all (global) matches and is case insensitive.
ii. Wildcards
. is the wildcard for one character
Ex: /b.r/ will match bar and brr
Ex //./ will find a period – note how we escaped the period.

* is the wildcard for 0 or more characters.
+ is the wildcard for 1 or more characters.
Both of them may be used to modify a type of character (see below).

iii. Position
^ means the beginning of a string
$means the end of the string
Ex: /^bar/ will find the bar in bargain, but not in rebar.
Ex: /par$/ will find the par in subpar, but not in park.
iv. Sets of characters
[list the choices] matches if one of the choices appears.
Ex: [aeiou] matches on any lower-case vowel.
v. Ranges of characters (uses ASCI collating sequence)
[first-last] matches anything between those (inclusive)
Ex. [A-Z] is all capitals.
Ex: [A-Za-z] is any letter (using also the syntax in iv.)
vi. Special sets of characters—note the lower case version describes the set and the upper case version is the opposite:
\d any digit
\D any non-digit (opposite of \d)
\w any alphanumeric character or _
\W the opposite of \w
\s any white space character (blanks, tabs, linefeeds etc.)
\S the opposite of \s

vii. But not….
The [^phrase] is used for negation and negates the whole phrase which follows
Ex: \W is equivalent to [^a-zA-Z0-9_]
viii. Repetition
* for 0 or more times
+ for 1 or more times
? means 0 or more of the previous characters
 - so \d+? is the same as \d*
{n} for exactly n times
{m, n} for between m and n times
Ex. \d{5} gives a 5-digit zip code
Ex. \d{5}(-\d{4})? Gives 5 and 9 digit zip codes
ix. Alternation is choice1 | choice 2
Ex: (CS) | (IT) gives the kinds of courses your favorite dept. offers.
x. Common verifications
U.S. zip codes: \d{5}(-\d{4})?
Canadian postal codes: [ABCEGHJKLMNPRSTVXY]\d[A-Z] \d[A-Z]\d
 Canadian codes are LetterDigitLetter DigitLetterDigit; note the space between the 2 groups. Also the first letter has a restricted set of values.

Social Security Numbers \d{3}-\d{2}-\d{4}

 Note: For non-humans (e.g. companies) they are often written as
 04-1234567 which is 04-\d{7}

North American phone numbers: \(?[2-9]\d\d\)?[-]?[2-9]\d\d-\d{4}
 Taking this apart, the initial \(? means an optional ‘(‘ ---which was
 escaped with the \.
 Then comes the 3-digit area code (which can’t start with a 0 or 1)
 Then the optional closing ‘)’ is \)?
 Then the 3-digit exchange, a – and 4 digit finish.
 How would you make the – in the middle of the phone
 number optional?
Email addresses: (\w\.)*\w@(\w\.)+[A-Za-z]+
Credit-cards:
 MasterCard (16 digits beginning 51-55): 5[1-5]\d{14}
 Visa (13 or 16 digits beginning with a 4): 4\d{12}(\d{3})?
 AmEx (15 digits starting with 34 or 37): 3[47]\d{13}
 Discover (16 digits starting 6011) 6011\d{12}
 Any one of the above: We use the syntax for alternation:
 (5[1-5]\d{14}) | (4\d{12}(\d{3})?) | (3[47]\d{13}) | (6011\d{12})
 NOTE: THIS STILL DOESN’T TAKE CARE OF THE CHECK-BIT
 ISSUES DISCUSSED IN THE PREVIOUS HAND-OUT.

