PERL

v2 10/23/06
References:

· Please see the list on our bookmarks!

· In books 24x7 (available thru your student membership in the ACM or thru the Simmons Library), there is a book called “The Weekend Crash Course in Perl”. (WCCP)
· http://www.pageresource.com/cgirec/index2.htm also has a good tutorial (not as deep) and lists all operators etc.

Install Perl on your own computer.

· If you run Windows, go to the ActivePerl site on the bookmarks or follow the instructions in Session 1 of WCCP.
· If you live in Mac-land, follow the instructions in Session1 of WCCP

· Perl already exists on Anita (and no doubt on web.simmons). It is also on the machines in S241, S150 and S251A (or at least I asked for it.)

Basic stuff

· On Anita all perl scrips will be in the cgi-bin directory of your public_html directory. Most webservers have a special directory where you must put cgi scripts.
· So, before you upload your first script, go into your public_html directory on Anita and make a folder called cgi-bin to hold your perl scripts.
· Because we will be running our perl scripts on Anita,
· You should compose them in Notepad or other utility which does not add line returns.
· You should FTP them to Anita using CoreFTP or other utility which doesn’t add line returns and using SFTP and set the permissions to 755.

· If you are a LINUX junkie, you may compose them directly on Anita in vi.

· Perl scripts have a .pl extension.

· Perl scripts begin:

 #!/usr/bin/perl -flags
· Perl uses semi-colons as line separators
· In Perl you can import a module (library) with:

 use moduleName;
· Perl has 3 kinds of variables, each with its own first character:

· Scalars such as $year
$year=2006; $college=’Simmons’;

· Arrays or lists such as @grades[4]
 @grades = (90, 95, 80, 85); or
 $grades[0] = 90; etc. (Because grades[0] is a scalar!)

Perl allows you to do fancy things with arrays- add elements etc.
You can even push and pop ontolists (the 0-th element is the bottom of the stack, so push and pop operate at the right-most element). Shift and un-shift do the same things at the left-most or 0-th element. (Shift() adds a value and unshift() removes one.) There is also a splice function which will add things into the middle of the array.
We won’t be using those things.

WARNING: Perl does not stop you from reading past the end of a list. If your list is @grades[4], then a reference to $grades[5] does NOT generate an error – instead you get whatever is next in memory.

The range operator gives you the last index in an array.

$#grades is the last inex in @grades - here it is 3, as @grades has elements indexed at 0, 1, 2, and 3.

Note that the length of @grades is 1+$#grades.

You can get Perl to print out an entire array with

print “Your grades are @grades”;

· Hashes or associative arrays such as
%Name = {“first”, “Magaret”, “last”, “Menzin”};
These are key-value pairs
Elements are referenced as %Name{‘last’}.
This should seem reminiscent of document.images[].
Please note the use of braces { } for hashes.

@myKeys=keys(%Name) puts the keys (first, last) into the array myKeys.
@myValues=values(%Name) puts the values into an array.

You could also define the hash and assign the values with:

%Name =
 (“first” => “Margaret”,
 “last” => “Menzin”);

To greet me with: Hello Margaret you would say

print “Hello $Name{‘first’};

NOTE the use of $ (because each entry is a scalar), of braces, and of the quote marks around the name of the key (because it is a string.)

foreach $nm((keys, %Name))
 { print “$nm name is $Name{$nm}.\n “ };

loops thru the has %Name, assigning to $nm each of the keys in turn. The print statement prints first the key (a string) and then the value assigned to the key. The result should be:

first name is Margaret.
last name is Menzin.

· # is used for comments

· print does the obvious thing. \n is a newline.
· Warning: Single and double quotes have different meanings in Perl

· A double quote around an expression which includes a variable causes the variable to be evaluated:

print “Your first grade was $grades[0].”

will cause the program to write:

Your first grade was 90.

· A single quote around an expression which includes a variable leaves th name of the variable:

print ‘Your first grade was $grades[0].’

will cause the program to write:

Your first grade was $grades[0].

.

· OF course we begin with (see your CD – Ch. 5)

#!/usr/bin/perl

#Hello World, of course

print "Hello World, of course!\n";
· The next Perl script would reside on a server and send a page back to the user who requested it:

#!/usr/bin/perl

print "Content-type: text/html\n\n";

print <<EOF;

<HTML>

<HEAD>

<TITLE>Hello, world! from Bruce</TITLE>

</HEAD>

<BODY>

<H1>Hello, world from Bruce!</H1>

</BODY>

</HTML>
EOF

· { } may be used to group statements, as in Java and JS.

· Boolean conditions are enclosed in ()

· The loops are:
· while (condition) {actions }
· until (condition) {actions }
· foreach $myVar($myList) {actions}
iterates thru $myList , making $myVar take on each entry and
does something with it.
· for() same 3-clause format as in Java and JS

· Perl has if, else and elsif (note spelling).

· Perl has stdin and stdout for I/O.

 $myVar = <stdin>;

reads from stdin.

chomp() removes newline characters:

 chomp($myVar =<stdin>);

reads from stdin into $mVar and then comps in t(leaving it in the same variable.) This is equivalent to:

 $myVar = <stdin>;
 chomp($myVar);

When you read data from forms you don’t need to chomp it !

· Of course Perl has regular expressions.
