From http://www.perldoc.com/perl5.8.4/lib/CGI.html#FETCHING-THE-NAMES-OF-ALL-THE-PARAMETERS-PASSED-TO-YOUR-SCRIPT-

FETCHING THE NAMES OF ALL THE PARAMETERS PASSED TO YOUR SCRIPT:
	 @names = $query->param

	

If the script was invoked with a parameter list (e.g. "name1=value1&name2=value2&name3=value3"), the param() method will return the parameter names as a list. If the script was invoked as an <ISINDEX> script and contains a string without ampersands (e.g. "value1+value2+value3") , there will be a single parameter named "keywords" containing the "+"-delimited keywords.

NOTE: As of version 1.5, the array of parameter names returned will be in the same order as they were submitted by the browser. Usually this order is the same as the order in which the parameters are defined in the form (however, this isn't part of the spec, and so isn't guaranteed).

FETCHING THE VALUE OR VALUES OF A SINGLE NAMED PARAMETER:
	 @values = $query->param('foo');

 -or-

 $value = $query->param('foo');

	

Pass the param() method a single argument to fetch the value of the named parameter. If the parameter is multivalued (e.g. from multiple selections in a scrolling list), you can ask to receive an array. Otherwise the method will return a single value.

If a value is not given in the query string, as in the queries "name1=&name2=" or "name1&name2", it will be returned as an empty string. This feature is new in 2.63.

If the parameter does not exist at all, then param() will return undef in a scalar context, and the empty list in a list context.

USING THE FUNCTION-ORIENTED INTERFACE
To use the function-oriented interface, you must specify which CGI.pm routines or sets of routines to import into your script's namespace. There is a small overhead associated with this importation, but it isn't much.

	 use CGI <list of methods>;

	

The listed methods will be imported into the current package; you can call them directly without creating a CGI object first. This example shows how to import the param() and header() methods, and then use them directly:

	 use CGI 'param','header';

 print header('text/plain');

 $zipcode = param('zipcode');

	

More frequently, you'll import common sets of functions by referring to the groups by name. All function sets are preceded with a ":" character as in ":html3" (for tags defined in the HTML 3 standard).

Here is a list of the function sets you can import:

:cgi

Import all CGI-handling methods, such as param(), path_info() and the like.

:form

Import all fill-out form generating methods, such as textfield().

:html2

Import all methods that generate HTML 2.0 standard elements.

:html3

Import all methods that generate HTML 3.0 elements (such as <table>, <super> and <sub>).

:html4

Import all methods that generate HTML 4 elements (such as <abbrev>, <acronym> and <thead>).

:netscape

Import all methods that generate Netscape-specific HTML extensions.

:html

Import all HTML-generating shortcuts (i.e. 'html2' + 'html3' + 'netscape')...

:standard

Import "standard" features, 'html2', 'html3', 'html4', 'form' and 'cgi'.

:all

Import all the available methods. For the full list, see the CGI.pm code, where the variable %EXPORT_TAGS is defined.

If you import a function name that is not part of CGI.pm, the module will treat it as a new HTML tag and generate the appropriate subroutine. You can then use it like any other HTML tag. This is to provide for the rapidly-evolving HTML "standard." For example, say Microsoft comes out with a new tag called <gradient> (which causes the user's desktop to be flooded with a rotating gradient fill until his machine reboots). You don't need to wait for a new version of CGI.pm to start using it immediately:

	 use CGI qw/:standard :html3 gradient/;

 print gradient({-start=>'red',-end=>'blue'});

	

Note that in the interests of execution speed CGI.pm does not use the standard Exporter syntax for specifying load symbols. This may change in the future.

If you import any of the state-maintaining CGI or form-generating methods, a default CGI object will be created and initialized automatically the first time you use any of the methods that require one to be present. This includes param(), textfield(), submit() and the like. (If you need direct access to the CGI object, you can find it in the global variable $CGI::Q). By importing CGI.pm methods, you can create visually elegant scripts:

	 use CGI qw/:standard/;

 print

 header,

 start_html('Simple Script'),

 h1('Simple Script'),

 start_form,

 "What's your name? ",textfield('name'),p,

 "What's the combination?",

 checkbox_group(-name=>'words',

 -values=>['eenie','meenie','minie','moe'],

 -defaults=>['eenie','moe']),p,

 "What's your favorite color?",

 popup_menu(-name=>'color',

 -values=>['red','green','blue','chartreuse']),p,

 submit,

 end_form,

 hr,"\n";

 if (param) {

 print

 "Your name is ",em(param('name')),p,

 "The keywords are: ",em(join(", ",param('words'))),p,

 "Your favorite color is ",em(param('color')),".\n";

 }

 print end_html;

	

