The Perl programs on Anita

HelloWorld.pl
#!/usr/bin/perl

#Hello World, of course

print "Hello World, of course!\n";

HelloWorldBroswer.pl

#!/usr/bin/perl

print "Content-type: text/html\n\n";

#Hello World, of course, for a browser

print "Hello World, of course!\n";

HelloWorldFromBruce.pl

#!/usr/bin/perl

print "Content-type: text/html\n\n";

print <<EOF;

<HTML>

<HEAD>

<TITLE>Hello, world! from Bruce</TITLE>

</HEAD>

<BODY>

<H1>Hello, world from Bruce!</H1>

</BODY>

</HTML>

EOF

(see more below)

These programs are called (on Anita) from pages on Joan:
a.pl

#!/usr/bin/perl

print "Content-type: text/html\n\n";

print << "EOF";

<HTML>

<HEAD>

<TITLE>Hello, world!</TITLE>

</HEAD>

<BODY>

<H1>Hello, world!</H1>

</BODY>

</HTML>

EOF

b.pl
#!/usr/bin/perl

print "Content-type: text/html\n\n";

use CGI ':standard'; #This imports the standard set of functions in the

 #CGI module, CGI or CGI.pm

 #You might also see use CGI qw(:standard);

$fn = param(" fname") #The param function gives the value paired with
 #the key ‘fname’

print << "EOF";

<HTML>

<HEAD>

<TITLE>Capturing a parameter</TITLE>

</HEAD>

<BODY>

<H1>Hi there $fn</H1>

</BODY>

</HTML>

EOF

b1.pl

#!/usr/bin/perl

print "Content-type: text/html\n\n";

use CGI 'param';

#This imports the param function from CGI.pm
$fn = param("fname");

print << "EOF";

<HTML>

<HEAD>

<TITLE>Capturing a parameter</TITLE>

</HEAD>

<BODY>

<H1>Hi there $fn</H1>

</BODY>

</HTML>

EOF

b2.pl

#!/usr/bin/perl

print "Content-type: text/html\n\n";

use CGI 'param';

$fn = param('fname');

print << "EOF";

<HTML>

<HEAD>

<TITLE>Capturing a parameter</TITLE>

</HEAD>

<BODY>

<H1>Hi there $fn</H1>

</BODY>

</HTML>

EOF

b3.pl

#!/usr/bin/perl

print "Content-type: text/html\n\n";

use CGI;

$fn = param('fname');

print << "EOF";

<HTML>

<HEAD>

<TITLE>Capturing a parameter</TITLE>

</HEAD>

<BODY>

<H1>Hi there $fn</H1>

</BODY>

</HTML>

EOF

b4.pl
#!/usr/bin/perl

print "Content-type: text/html\n\n";

use CGI;

my $cgi = new CGI;

#Introduces a new CGI-object, $cgi

#Note use of my to make it private.
my $fn =$cgi-> param('fname');

#Uses OO notation to access the

#param method in our object

print << "EOF";

<HTML>

<HEAD>

<TITLE>Capturing a parameter</TITLE>

</HEAD>

<BODY>

<H1>Hi there $fn</H1>

</BODY>

</HTML>
EOF

b5.pl
#!/usr/bin/perl

print "Content-type: text/html\n\n";

use CGI;

my $cgi = new CGI;

my $fn =$cgi-> param('fname');

print start_html('using built in funcs for cgi');
#Uses functions built into CGI

#object to write html
print << "EOF";

<h1>Hi There Folks!</h1>

</BODY>

</HTML>

EOF

b5a.pl
#!/usr/bin/perl

print "Content-type: text/html\n\n";

use CGI;

my $cgi = new CGI;

my $fn =$cgi-> param('fname');

print start_html('using built in funcs for cgi');

print << "EOF";

<H1>Hi there $fn</H1>

</BODY>

</HTML>

EOF

Here are some further examples from Lincoln Stein’s documentation on CGI (found at http://perl.about.com/gi/dynamic/offsite.htm?zi=1/XJ&sdn=perl&zu=http%3A%2F%2Fwww.cgi101.com%2Fbook%2Fch1%2Ftext.html)

PROGRAMMING STYLE
There are two styles of programming with CGI.pm, an object-oriented style and a function-oriented style. In the object-oriented style you create one or more CGI objects and then use object methods to create the various elements of the page. Each CGI object starts out with the list of named parameters that were passed to your CGI script by the server. You can modify the objects, save them to a file or database and recreate them. Because each object corresponds to the "state" of the CGI script, and because each object's parameter list is independent of the others, this allows you to save the state of the script and restore it later.

For example, using the object oriented style, here is how you create a simple "Hello World" HTML page:

 #!/usr/local/bin/perl -w

 use CGI; # load CGI routines

 $q = new CGI; # create new CGI object

 print $q->header, # create the HTTP header

 $q->start_html('hello world'), # start the HTML

 $q->h1('hello world'), # level 1 header

 $q->end_html; # end the HTML

In the function-oriented style, there is one default CGI object that you rarely deal with directly. Instead you just call functions to retrieve CGI parameters, create HTML tags, manage cookies, and so on. This provides you with a cleaner programming interface, but limits you to using one CGI object at a time. The following example prints the same page, but uses the function-oriented interface. The main differences are that we now need to import a set of functions into our name space (usually the "standard" functions), and we don't need to create the CGI object.

 #!/usr/local/bin/perl

 use CGI qw/:standard/; # load standard CGI routines

 print header, # create the HTTP header

 start_html('hello world'), # start the HTML

 h1('hello world'), # level 1 header

 end_html; # end the HTML

The examples in this document mainly use the object-oriented style. See HOW TO IMPORT FUNCTIONS for important information on function-oriented programming in CGI.pm

CALLING CGI.PM ROUTINES
Most CGI.pm routines accept several arguments, sometimes as many as 20 optional ones! To simplify this interface, all routines use a named argument calling style that looks like this:

 print $q->header(-type=>'image/gif',-expires=>'+3d');

Each argument name is preceded by a dash. Neither case nor order matters in the argument list. -type, -Type, and -TYPE are all acceptable. In fact, only the first argument needs to begin with a dash. If a dash is present in the first argument, CGI.pm assumes dashes for the subsequent ones.

Several routines are commonly called with just one argument. In the case of these routines you can provide the single argument without an argument name. header() happens to be one of these routines. In this case, the single argument is the document type.

 print $q->header('text/html');

Other such routines are documented below.

Sometimes named arguments expect a scalar, sometimes a reference to an array, and sometimes a reference to a hash. Often, you can pass any type of argument and the routine will do whatever is most appropriate. For example, the param() routine is used to set a CGI parameter to a single or a multi-valued value. The two cases are shown below:

 $q->param(-name=>'veggie',-value=>'tomato');

 $q->param(-name=>'veggie',-value=>['tomato','tomahto','potato','potahto']);

A large number of routines in CGI.pm actually aren't specifically defined in the module, but are generated automatically as needed. These are the "HTML shortcuts," routines that generate HTML tags for use in dynamically-generated pages. HTML tags have both attributes (the attribute="value" pairs within the tag itself) and contents (the part between the opening and closing pairs.) To distinguish between attributes and contents, CGI.pm uses the convention of passing HTML attributes as a hash reference as the first argument, and the contents, if any, as any subsequent arguments. It works out like this:

 Code Generated HTML

 ---- --------------

 h1() <h1>

 h1('some','contents'); <h1>some contents</h1>

 h1({-align=>left}); <h1 align="LEFT">

 h1({-align=>left},'contents'); <h1 align="LEFT">contents</h1>

HTML tags are described in more detail later.

Many newcomers to CGI.pm are puzzled by the difference between the calling conventions for the HTML shortcuts, which require curly braces around the HTML tag attributes, and the calling conventions for other routines, which manage to generate attributes without the curly brackets. Don't be confused. As a convenience the curly braces are optional in all but the HTML shortcuts. If you like, you can use curly braces when calling any routine that takes named arguments. For example:

 print $q->header({-type=>'image/gif',-expires=>'+3d'});

If you use the -w switch, you will be warned that some CGI.pm argument names conflict with built-in Perl functions. The most frequent of these is the -values argument, used to create multi-valued menus, radio button clusters and the like. To get around this warning, you have several choices:

1. Use another name for the argument, if one is available. For example, -value is an alias for -values.

2. Change the capitalization, e.g. -Values

3. Put quotes around the argument name, e.g. '-values'

Many routines will do something useful with a named argument that it doesn't recognize. For example, you can produce non-standard HTTP header fields by providing them as named arguments:

 print $q->header(-type => 'text/html',

 -cost => 'Three smackers',

 -annoyance_level => 'high',

 -complaints_to => 'bit bucket');

This will produce the following nonstandard HTTP header:

 HTTP/1.0 200 OK

 Cost: Three smackers

 Annoyance-level: high

 Complaints-to: bit bucket

 Content-type: text/html

Notice the way that underscores are translated automatically into hyphens. HTML-generating routines perform a different type of translation.

This feature allows you to keep up with the rapidly changing HTTP and HTML "standards".

CREATING A NEW QUERY OBJECT (OBJECT-ORIENTED STYLE):
 $query = new CGI;

This will parse the input (from both POST and GET methods) and store it into a perl5 object called $query.

CREATING A NEW QUERY OBJECT FROM AN INPUT FILE
 $query = new CGI(INPUTFILE);

If you provide a file handle to the new() method, it will read parameters from the file (or STDIN, or whatever). The file can be in any of the forms describing below under debugging (i.e. a series of newline delimited TAG=VALUE pairs will work). Conveniently, this type of file is created by the save() method (see below). Multiple records can be saved and restored.

Perl purists will be pleased to know that this syntax accepts references to file handles, or even references to filehandle globs, which is the "official" way to pass a filehandle:

 $query = new CGI(*STDIN);

.

FETCHING THE NAMES OF ALL THE PARAMETERS PASSED TO YOUR SCRIPT:
 @names = $query->param

If the script was invoked with a parameter list (e.g. "name1=value1&name2=value2&name3=value3"), the param() method will return the parameter names as a list. If the script was invoked as an <ISINDEX> script and contains a string without ampersands (e.g. "value1+value2+value3") , there will be a single parameter named "keywords" containing the "+"-delimited keywords.

NOTE: As of version 1.5, the array of parameter names returned will be in the same order as they were submitted by the browser. Usually this order is the same as the order in which the parameters are defined in the form (however, this isn't part of the spec, and so isn't guaranteed).

FETCHING THE VALUE OR VALUES OF A SINGLE NAMED PARAMETER:
 @values = $query->param('foo');

 -or-

 $value = $query->param('foo');

Pass the param() method a single argument to fetch the value of the named parameter. If the parameter is multivalued (e.g. from multiple selections in a scrolling list), you can ask to receive an array. Otherwise the method will return a single value.

If a value is not given in the query string, as in the queries "name1=&name2=" or "name1&name2", it will be returned as an empty string. This feature is new in 2.63.

If the parameter does not exist at all, then param() will return undef in a scalar context, and the empty list in a list context.

SETTING THE VALUE(S) OF A NAMED PARAMETER:
 $query->param('foo','an','array','of','values');

This sets the value for the named parameter 'foo' to an array of values. This is one way to change the value of a field AFTER the script has been invoked once before. (Another way is with the -override parameter accepted by all methods that generate form elements.)

param() also recognizes a named parameter style of calling described in more detail later:

 $query->param(-name=>'foo',-values=>['an','array','of','values']);

 -or-

 $query->param(-name=>'foo',-value=>'the value');

APPENDING ADDITIONAL VALUES TO A NAMED PARAMETER:
 $query->append(-name=>'foo',-values=>['yet','more','values']);

This adds a value or list of values to the named parameter. The values are appended to the end of the parameter if it already exists. Otherwise the parameter is created. Note that this method only recognizes the named argument calling syntax.

FETCHING THE PARAMETER LIST AS A HASH:
 $params = $q->Vars;

 print $params->{'address'};

 @foo = split("\0",$params->{'foo'});

 %params = $q->Vars;

 use CGI ':cgi-lib';

 $params = Vars;

Many people want to fetch the entire parameter list as a hash in which the keys are the names of the CGI parameters, and the values are the parameters' values. The Vars() method does this. Called in a scalar context, it returns the parameter list as a tied hash reference. Changing a key changes the value of the parameter in the underlying CGI parameter list. Called in a list context, it returns the parameter list as an ordinary hash. This allows you to read the contents of the parameter list, but not to change it.

When using this, the thing you must watch out for are multivalued CGI parameters. Because a hash cannot distinguish between scalar and list context, multivalued parameters will be returned as a packed string, separated by the "\0" (null) character. You must split this packed string in order to get at the individual values. This is the convention introduced long ago by Steve Brenner in his cgi-lib.pl module for Perl version 4.

If you wish to use Vars() as a function, import the :cgi-lib set of function calls (also see the section on CGI-LIB compatibility).

RETRIEVING CGI ERRORS
Errors can occur while processing user input, particularly when processing uploaded files. When these errors occur, CGI will stop processing and return an empty parameter list. You can test for the existence and nature of errors using the cgi_error() function. The error messages are formatted as HTTP status codes. You can either incorporate the error text into an HTML page, or use it as the value of the HTTP status:

 my $error = $q->cgi_error;

 if ($error) {

 print $q->header(-status=>$error),

 $q->start_html('Problems'),

 $q->h2('Request not processed'),

 $q->strong($error);

 exit 0;

 }

When using the function-oriented interface (see the next section), errors may only occur the first time you call param(). Be ready for this!

USING THE FUNCTION-ORIENTED INTERFACE
To use the function-oriented interface, you must specify which CGI.pm routines or sets of routines to import into your script's namespace. There is a small overhead associated with this importation, but it isn't much.

 use CGI <list of methods>;

The listed methods will be imported into the current package; you can call them directly without creating a CGI object first. This example shows how to import the param() and header() methods, and then use them directly:

 use CGI 'param','header';

 print header('text/plain');

 $zipcode = param('zipcode');

More frequently, you'll import common sets of functions by referring to the groups by name. All function sets are preceded with a ":" character as in ":html3" (for tags defined in the HTML 3 standard).

NOTE: I do not use these, and I’m not even sure if they have DOCTYPEs etc.
Here is a list of the function sets you can import:

:cgi
Import all CGI-handling methods, such as param(), path_info() and the like.

:form
Import all fill-out form generating methods, such as textfield().

:html2
Import all methods that generate HTML 2.0 standard elements.

:html3
Import all methods that generate HTML 3.0 elements (such as <table>, <super> and <sub>).

:html4
Import all methods that generate HTML 4 elements (such as <abbrev>, <acronym> and <thead>).

:netscape
Import all methods that generate Netscape-specific HTML extensions.

:html
Import all HTML-generating shortcuts (i.e. 'html2' + 'html3' + 'netscape')...

:standard
Import "standard" features, 'html2', 'html3', 'html4', 'form' and 'cgi'.

:all
Import all the available methods. For the full list, see the CGI.pm code, where the variable %EXPORT_TAGS is defined.

If you import a function name that is not part of CGI.pm, the module will treat it as a new HTML tag and generate the appropriate subroutine. You can then use it like any other HTML tag. This is to provide for the rapidly-evolving HTML "standard." For example, say Microsoft comes out with a new tag called <gradient> (which causes the user's desktop to be flooded with a rotating gradient fill until his machine reboots). You don't need to wait for a new version of CGI.pm to start using it immediately:

 use CGI qw/:standard :html3 gradient/;

 print gradient({-start=>'red',-end=>'blue'});

Note that in the interests of execution speed CGI.pm does not use the standard Exporter syntax for specifying load symbols. This may change in the future.

If you import any of the state-maintaining CGI or form-generating methods, a default CGI object will be created and initialized automatically the first time you use any of the methods that require one to be present. This includes param(), textfield(), submit() and the like. (If you need direct access to the CGI object, you can find it in the global variable $CGI::Q). By importing CGI.pm methods, you can create visually elegant scripts:

 use CGI qw/:standard/; #Note syntax for /: and /;
 print

 header,

 #Note fields separated by commas
 start_html('Simple Script'),

 h1('Simple Script'),

 start_form,

 "What's your name? ",textfield('name'),p,

 "What's the combination?",

 checkbox_group(-name=>'words',

 -values=>['eenie','meenie','minie','moe'],

 -defaults=>['eenie','moe']),p,

 "What's your favorite color?",

 popup_menu(-name=>'color',

 -values=>['red','green','blue','chartreuse']),p,

 submit,

 end_form,

 hr,"\n";

 if (param) {

 print

 "Your name is ",em(param('name')),p,

 "The keywords are: ",em(join(", ",param('words'))),p,

 "Your favorite color is ",em(param('color')),".\n";

 }

 print end_html;

The reference to the whole document has lots more information about creating drop down lists, etc. NOTE that these functions generate the actual html, which is why they are all (comma separated) in the scope of the one print.
It should be pointed out that once you have used param() to get each of the field values which the script POSTed to you, you cab then proceed to do your usual programming --- test the values, print different things depending on the values, etc.

The hand-out I gave you (see p.65) shows you how to handle both GETs and POSTs in one program:
$request_method=$ENV(‘REQUEST_METHOD’);

if ($request_method eq “GET”)

{$query_string=$ENV(‘QUERY_STRING’);}

elsif ($request_method eq “POST”

{read (STDIN, $query_string, $ENV(‘CONTENT_LENGTH’));}

else

{&return_error (500, “Server Error”. “Server uses unsupported method”);}

At this point, whether the form was sent with a GET or a POST, the name=value pairs are stored in $query_string.

You can now continue on to split it and separate the pairs.
A better solution is to use the param method of a CGI object. Param will automatically determine if the data came from a GET or a POST, and will look accordingly in the QUERY_STRING or STDIN. Further it parse it for you.

See code on p. 93-94

#!/usr/bin/perl –wT

use strict;

my $q = new CGI;

#my makes it private to this block of code,

#as required by strict

my ($name, $value);
#2 more private variables

foreach $name ($q->param)

{print “$name:\n”;

#prints the name or key, in a loop

 foreach $value ($q->param($name))

{print “ $value\m”;

}

}

Perl and Regular Expressions:

Pattern Matching

Now that you are familiar with some of the basics of regular expressions, you probably want to know how to use them in Perl. Doing so is very easy. There is an operator, =~, that you can use to match a regular expression against scalar variables. Regular expressions in Perl are placed between two forward slashes (i.e., //). The whole $scalar =~ // expression will evaluate to 1 if a match occurs, and undef if it does not.

Consider the following code sample:

use strict;

while (defined($currentLine = <STDIN>)) {

 if ($currentLine =~ /^(J|R)MS speaks:/) {

 print $currentLine;

 }

}

This code will go through each line of the input, and print only those lines that start with "JMS speaks:" or "RMS speaks:".

See

http://ebb.org/PickingUpPerl/pickingUpPerl.html#Pattern%20Matching
for more details.
