Web Services

1. History of trying to have interoperable computer programs. Why?

a. Business advantage to let your customers access some of your programs to place orders, track orders, etc.

b. After mergers need to aggregate information from several different units – e.g. for HR, for financial reporting, even for vertical integration.

c. Some industries tried to this (e.g. RosettaNet) with EDI and CORBA (Electronic Data Interchange and Common Object Request Broker Architecture. See http://www.omg.org/gettingstarted/corbafaq.htm#WhatIsIt for more information)

d. This didn’t work well – the interfaces were too complicated, there was jockeying among vendors to enforce their methods as standards, and the pieces were tightly coupled (a change in one system or program th required changes in other programs) etc. Please read the article I forwarded to you (4 pages at http://www.acmqueue.com/modules.php?name=Content&pa=showpage&pid=396)

e. Meanwhile, the Web grew up and people saw the Web and the stack of protocols it used (TCP/IP, HTTP, FTP etc.) as a vehicle for making computers truly interoperable ---Think of how your web page may be served on a Mac, a PC, a Linux machine or Solaris work station etc.
Businesses wanted an equally smooth and universal way for computers to talk to computers.
The key pieces of the smooth operation of the www is

i. HTTP over TCP/IP for requesting and serving pages;

ii. XHTML and JavaScript as ‘lingua franca’ for writing those pages and browsers for rendering them
iii. Standards – so that the XHTML and JavaScript are always interpreted in the same way, so all browsers ‘understand’ the tags and lanuage constructs.

iv. Organizations to decide on standards – and the major suppliers of software systems need ot ‘buy into’ those organizations and standards.

2. What are web services trying to accomplish?

a. Please read Ch. 1 of “Executive Guide to Web Services” (a text for the course.)

b. Basically, web services aim to do for computer-to-computer interactions what HTTP (over TCP/IP) and XHTML and JavaScript do for user-to-computer interactions. That is, web services aim to provide a platform-neutral seamless interaction. (In other words, it doesn’t matter if one company is running IBM System 370 with IBM’s DB2 database and programs in C or COBOL and the other partner is running PHP or Java programs on a network of PCs or Macs.)
c. As in the (human) user-to-computer case we all are used to, the same key pieces must be in place:

i. Agreed on protocols for various interactions (see below); these are the analogues of HTTP and TCP/IP but they are built on top of (use) HTTP TCP/IP

ii. A universal language. This is XML (and its extensions). XML is the analogue of XHTML/JavaScript.

iii. Standards

iv. Organizations to develop the standards. There are two such organizations:
The w3c (World Wide Web Consortium at www.w3c.org) and OASIS (Organization for the Advancement of Structured Information Standards at www.oasis-open.org)
By now the major players have (almost completely) bought into these organizations.
3. What does this XML language look like?

a. First of all, XML is a means for describing data.
That’s all it is.
 In Java programming you might have defined a Student class which had certain fields in it (e.g. FirstName, LastName, CreditsEarned, and GPA) and might have contained a Transcript object. When you defined that record you might have specified GPA as a real number between 0 and 4, CreditsEarned as a integer which is greater than or equal to 0, etc.)
When you defined Transcript you might have specifed it as having a name (e.g. Fall_2006) and 0-6 Courses, each of which is a record containing a DeptPrefix, CourseNum, SectionNum, CourseTitle, Instructor and Grade.)

b. This is exactly the kind of thing whch XML is designed to do. (Please notice – NO methods – just data.) A typical instance of Student might look like:

<Student>
 <FirstName>Sally</FirstName>
 <LastName>Simmons</LastName>
 <CreditsEarned>32</CreditsEarned>
 <GPA>3.6</GPA>
 <Transcript>

<Semester>

<SemesterName>Fall 2006</SemesterName>
 <Course>
 :
</Semester>
<Semester>

 :

</Semester>

 </Transcript>

</Student>

c. What do you notice about this?

· It looks somewhat like XHTML – bunches of tags. That is because XHTML is written in XML

· It is self-documenting (especially when you also have access to the definition of Student)

· It has lots of nested structures

· It is very chatty.

· It looks easy to write.
· You need a way to transate items from a program or database into this format and vice versa.
d. What did you mean by XML and its extensions?
 XML stands for eXtensible Mark-up Language. It gives you a
 way to define a record such as Student, and put that record’s
 declaration on-line so that lots of different organizations can
 access and use that definition.
 For example, all publishers and libraries might use the same
 declaration for Book, which would make it easy for libraries to
 buy books, ask for books on inter-library loan, etc.
 Well, just as you can make the definition of Book available, you
 may also define extensions to XML (e.g new data types,
 beyond integer, real, etc.) for your industry. And there are a
 number of these extensions – ChemML, MathML, eBXML etc.

4. OK – now I have an idea about the language, but what makes things
 happen?
 The idea behind web services is that one computer can provide
 some service (e.g. verifying that some credit card is a good card
 and OK to charge your book order on), and another computer
 (at your Amazon) needs that service. Then Amazon should be
 able to ‘discover’ who is offering that service by looking in a
 registery (like a phone book), and that registery should also
 tell Amazon’s computers what information it needs (go to this
 URL to find what a credit card record looks like), where to
 send it, etc. and even bill Amazon for the service.
 Now Amazon’s computer can access this service, get the
 answer it needs, and proceed with processing the customer’s
 order.
5. What about the protocols?

a. There are several of these which are basic to all of Web
 Services:

· SOAP stands for Simple Object Access Protocol

· WSDL stands for Web Services Description Language
· UDDI stands for Universal Description, Discovery and Integration
 b. Here’s how they work:
 UDDI is the language used (in a standard form) on a
 registery to describe the service. The UDDI
 descriptor ‘points to’ a place which has more
 details about the service (in WSDL).
 NOTE: Many web services applications are
 within a company and then UDDI is not used.
 WSDL describes (in XML) what data types are used,
 and what kinds of messages may be sent to
 the service and returned. (Imagine you may
 have a different set of messages for credit
 cards and for debit cards.)
 SOAP puts the message in an envelope, with a
 header, wit the actual essage in the body, etc.
 It also gives the model for RPC (Remote Procedure
 Call) types of interactions – i.e. when a message
 is returned as a response to a specific request.
c. Is there more? Of course.

· There are interfaces to translate back and forth between XML and your favorite programming language. (Notice that your computer speaking Java will use one interface and my computer speaking PHP will use another--- XML provides the platform-neutral communication.) We will talk about the two basic types of interfaces later on.

· There is SAML for secure messaging, there are standards being developed for other needs, such as QOS (quality of service – what’s the longest it will take you to get back to me) etc.

d. What about the w3c and OASIS?
 The w3c takes care of all the standards except UDDI, which
 belongs to OASIS.

5. What is so distinctive about Web Services? They are:

· Platform-neutral

· Standards-based

· Self-describing

· Implemented over a network

· Implemented through programs (i.e. w/o humans)

· Loosely-coupled

 6. What is the SOA I keep seeing?

 SOA stands for Service Oriented Architecture. It is about building
 computer systems (even ones internal to a company) using the
 ideas and methods of web services – see 5 above.
 Read Ch. 2 of Excutive’s Guide and Preface+Ch.1 of ‘Understanding WS’

