From www.topxml.com/xml/learnxml.asp
and www.schools2.com/xml/
and various books (OReilly’s Learning XML, the XML Bible, the Official XMLSpy Handbook are particularly good.)

and Roger Costello’s © XML Schema tutorial at www.xfront.com
A typical XML document looks like:

 <?xml version="1.0" encoding="ISO-8859-1"?>

 <!DOCTYPE SYSTEM "someFile.dtd">
 <!--THIS IS A COMMENT–USE THEM LIBERALLY–NOTE 2 DASHES-->

<booklist>

<book>

<title>Official XMLSpy Handbook</title>

<author>Larry Kim</author>

<edition cover=”paperback”>2</edition>

</book>
 <book>
 <title>Learning XML</title>

<author>Erik T. Ray</author>

<edition cover=”paperback”>2</edition>
 </book>

</booklist>

The first line is the PI (processing instructions); it identifies the version of XML. The second line identifies the file where the definition of the various elements used in this document is stored.

Notice that every XML document really comes in two pieces – the XML document and the DTD which describes the form for the actual document. You may, if you wish, put the DTD inside the XML document (so is only one file), but the whole aim here is to have data which is shared by various programs/computers/companies. So the different programs both need to access the same description of the elements, and therefore the description (the DTD or schema) is usually stored separately. Obviously, then, one DTD may be reused by many documents.
The root element is booklist.

Its child element is book, which in turn has child elements title, author and edition.

The thing between the opening and closing tag is called the content or value of the element. For example, the content of the first author element is Larry Kim.

The edition element has an attribute whose value is the stuff in quotes after the equal sign.

Structurally, an XML document is a tree. Both Internet Explorer and Netscape Navigator will display an XML document in a nice indented format. Of course, XMLSpy will also pretty-print your XML document, and the “Globe” view is similar to that of IE and NN. They all do this pretty-printing by parsing the document.

You may, actually have an XML document without a DTD (no DTD inside the document and no external reference.):

<?xml version="1.0" standalone="yes"?>

<foo>Hello World!</foo>

You might try creating this file in Notepad, and then opening it in IE or NN.

If you want a style sheet for this XML you could say

<?xml version="1.0" standalone="yes"?>

<?xml-stylesheet type=”text/css” href=”hwstyle.css”>

<foo>Hello World!</foo>

where in the same directory you create hwstyle.css to have

foo {display:block; font-size:16pt; font-weight:bold}
Rules for Elements

Obviously, if we could just create elements in any old way we wanted, we wouldn't be any further along than our text file examples from the previous chapter. There must be some rules for elements, which are fundamental to the understanding of XML.

XML documents must adhere to these rules to be well-formed.

We'll list them, briefly, before getting down to details:

· Every start-tag must have a matching end-tag

· Tags can't overlap; they may be nested.

· XML documents can have only one root element

· Element names must obey XML naming conventions – e.g.
· quote attributes with single or double quotes;
· all attributes are lower case; usual characters may not be in the name;
· names begin with a letter or _
· names may contain numbers and letters (including from other languages) and _,- etc.
· no blank spaces etc. in names (tho’ _ and . are allowed)

· names may NOT begin with xml, XML or Xml
· names may not contain a : which is used for qualifying names with a namespace
(e.g. my_dtd:my_var)

· no blank space after the < which opens a tag/element

· empty elements are allowed and follow the syntax you learned in XHTML

· XML is case-sensitive

· XML will keep white space in your text

A Change from XHTML: White Space

In HTML, and therefore in XHTML, any white space, beyond one character, is considered irrelevant and stripped away. In fact, when you want extra spaces (for example to line up some text) you need to use which is the “entity” for non-breaking space. Alternatively, in HTML/XHTML you may use <pre> Anything in here will be displayed exactly as typed </pre>. (Recall that “pre” stands for pre-formatted and is also used for displaying quoted material.)
XML does not strip away extra white space.

Well-formed vs. valid
An XML document which follows the rules above (e.g. not overlapping tags) is well-formed. An XML document which is well-formed and meets the definitions in a DTD or schema is valid. The DTD or schema will include information such as what is the underlying data type for an element, is the element required or optional, how many times may an element appear, and similar matters for attributes.

XMLSpy has a validator built into it. Another free parser/validator, named Xerces, is available from Apache. (Xerces actually has an API built into it so that you can call it from a program – say to validate a file one of your customers or suppliers sent you.)
Decisions about what goes in elements and what in attributes

As a general rule of thumb, elements contain data and attributes contain information about that data (meta-data), such as units, ID numbers, and URLs.

Here are some of the problems using attributes:

· attributes cannot contain multiple values (child elements can)

· attributes are not easily expandable (for future changes)

· attributes cannot describe structures (child elements can)

· attributes are more difficult to manipulate by program code

· attribute values are not easy to test against a Document Type Definition (DTD) - which is used to define the legal elements of an XML document
· your meta-data may be someone else’s data, may be structured (think of a reference for a quotation), or may need meta-meta-data - in any of these cases you probably need to use elements rather than attributes

· there are some problems with data types, at least if you use DTDs.
If you use attributes as containers for data, you end up with documents that are difficult to read and maintain. Try to use elements to describe data. Use attributes only to provide information that is not relevant to the data. But id may be in child elements or attributes.
Entities
As in XHTML and Perl, certain characters have a syntactical meaning (e.g. <, & etc.) and must be escaped when you want to use them for their usual uses. In XML, as in XHTML, they are escaped using &…; form. (This should not surprise you since XHTML is defined in XML.) These escaped forms are referred to as entities.

There are five entities which come built into XML and you will need:

&
&

'
‘

>

>

<

<

"
“
Any file or web resource that can be "included" into an XML file is an entity. Entity is also used to refer to special character representations and substitutions of text strings and includes.

An example of using entities to substitute entities for text strings are:

	<!ENTITY BookName "XML programming for VB and ASP

developers">

Now you can use the entity &BookName ; in a document and wherever you refer to it, the entire string of "XML programming for VB and ASP developers" will be substituted.
Entities are also useful for including graphic images.

In a DTD it is possible to define an entity, but then you use % instead of &.
+ and *

· * means 0 or more occurrences (of an element).

· + means 1 or more occurrences.
DTD
A DTD, stored in an external file, for our booklist (with slightly different elements) would look like:
<!-- A book catalogue contains zero or more books -->

<!ELEMENT Booklist (Book)*>

<!-- A Book has a Title, Author, Date, ISBN, and a Publisher -->

<!ELEMENT Book (Title, Author, Date, ISBN, Publisher)>

<!ELEMENT Title (#PCDATA)>

<!ELEMENT Author (#PCDATA)>

<!ELEMENT Date (#PCDATA)>

<!ELEMENT ISBN (#PCDATA)>

<!ELEMENT Publisher (#PCDATA)>

There are several things to notice here.

· The word “element” is all caps.

· Each element lists its children in parentheses.

· The elements which have no children list the type #PCDATA, which stands for “parsed character data” and is a string. It is the only underlying type you can get a hold of in a DTD.
· The location of the DTD you are using goes in the second line of the XML document. It need NOT be a file on your own computer --- it could be a URL to wherever on the web the DTD is. If people at different companies are to share usage of a DTD (or schema), then that DTD (or schema) must be accessible over the web.

· The Booklist element has 0 or more books in it: Hence the * in
 <!ELEMENT Booklist (Book)*>

· There are many repositories for schema (including various trade associations):

· www.xml.org
· www.schema.net
· www.biztalk.org
Attributes are defined with

<!ATLIST element_name attribute_name type default_value>

The attribute types are PCDATA, an enumeration (a list of choices), ID and other types having to do with IDs, entities, XML names and notations.

#PCDATA and <![CDATA[unparsed stuff here]]>
PCDATA stands for parsed character data. Think of it as strings.
You have seen the escaping for it (i.e. character data which is not parsed) when you inserted JavaScript into your XHTML pages.
You do not need to escape with the usual entities inside your CDATA sections.

An XML document may have an internal DTD:

<?xml version="1.0" standalone="yes"?>

<!DOCTYPE foo[

<!ELEMENT foo (#PCDATA)>

}>

<foo>Hello World!</foo>

