XML Notes 4 – Start of Schemas
Problems with DTDs

1. Not in XML – so not Xtensible.
2. Only one DTD per XML Document –

a. so harder to grab pieces of an industry standard;

b. think of problem with “course.dtd”---had to include the whole thing and then worry about naming conflicts (i.e. read the whole thing and it could be very long).
3. Related to this, poor namespace support.
4. Not enough data types:
a. No numerical types
b. No date types

c. No way to enforce constraints such as “age is non-negative”.
5. Not object oriented and therefore no inheritance.
6. Very inflexible about allowing you to alter the order of child elements

7. Security issues – especially allowing an internal section of a DTD to over-ride an external DTD.
On to schemas---------
What about schemas

1. A schema is itself an XML document - hence well formed.

2. A schema will almost always reference schemas which are publicly defined.

a. A schema will refer to the underlying types the w3.org has defined

b. A schema may also refer to an industry-wide schema or element

c. A schema may refer to other schemas you have written (e.g. on your own computer).

3. In order to keep everything straight and avoid naming conflicts, schemas use the following system.

a. Each schema (or the names in each schema) is called a namespace.

b. External schemas (e.g. 2a and 2b) are given with a short nickName.
c. Any element etc. in an external schema is referred to in the form

 nickName:elementName

d. Elements in your own schema don’t need the nickName: before them.
e. The nickname is given in an element tag of the form:

 <nickName xmlns=”http://where the defining schema is located”>

f. You will also frequently see:

 <nickName:elementName xmlns:nickName=http://.....>

This both defines what nickName refers to and uses its elementName.
g. Please read http://www.w3schools.com/xml/xml_namespaces.asp and http://www.w3schools.com/schema/schema_schema.asp for more information.

h. While it is common for the given URL to refer to a place where a schema is stored, it doesn’t have to (URI vs. URL). What the URI does is provide a unique name for a namespace.
i. Namespaces can be made to do very complicated things, and we will return to this subject again (in a couple of classes).

j. The one namespace which is used most often is the one at w3org which defines data types for schemas.

k. The usual line for this is:

<xs:schema xmlns:xs=http://www.w3.org/2001/XMLSchema>
 :
</xs:schema>

l. It is traditional to use either xs or xsd for this namespace.
Most references use xsd, but XMLSpy uses xsd.
m. When you need to refer to a (data) type at that URL you will reference it as something like
 xs:string
 xs:date

 xs:ID
 xs:decimal

 xs:time xs:IDREF
 xs:integer
 xs:dateTime

 xs:IDREFS
 xs:float

 xs:Boolean

(xs:token is the same as xs:string, but extra white spaces have been removed.)

n. There are many other types (e.g. for positive integers, for non-negative integers etc.) and you can read about all of them there. Your tutorial on schemas has a list of them.
4. As you can see, schemas have support for my more data types, and even allow you to define your own types.

5. In particular you may define a data type to meet constraints from your “business rules” (e.g. employeeID <= 500) or from your database.

6. Schemas support inheritance. For example, if a course element is defined in schema1, then you may add further elements to it in schema2 and all the constraints from the data types in schema1 will be inherited in schema2.

7. We refer to an element in a schema as being either simple (no children) or complex.

More on Schemas

1. Every schema has schema as its root element. So, a minimal schema is:

<?xml version="1.0"?>

<xsd:schema xmlns:xsd=http://www.w3.org/2001/XMLSchema>
</xsd:schema>

2. The definition of the underlying data types, of element, etc. are all in the URL above, so when we define a new element it will look like

3. The complete schema, stored in dumbSchema.xsd is
<?xml version="1.0"?>

<xsd:schema xmlns:xsd=http://www.w3.org/2001/XMLSchema>
<xsd:element name="MyOnlyElement" type="xsd:string"/>
</xsd:schema>

4. When you put this into XMLSpy (and take out the place for comments, which XMLSpy kindly suggests) you get:

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
 elementFormDefault="qualified"
 attributeFormDefault="unqualified">

<xs:element name="MyOnlyElement" type="xs:string"/>
</xs:schema>

5. You can get the same effect in XMLSpy by
a. Open a new document of the Schema (xsd) type.

b. Put yourself in the Schema/WSDL view (button at bottom of central pane.)

c. Type MyOnlyElement into the dark blue box in the center pane (where it asks for a root element.)

d. Click on element in the Components pane (upper right).

e. Move down to the Details pane (below Components) and click next to type.

f. Use the pull down menu to select xs:string.

g. Now go to the Text view (button at the bottom of the center pane.)

 6. When you ask for a new xsd document (schema) in XMLSpy you will get:

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified" attributeFormDefault="unqualified">

<xs:element name="ENTER_NAME_OF_ROOT_ELEMENT_HERE">

<xs:annotation>

<xs:documentation>Comment describing your root
 element
 </xs:documentation>

</xs:annotation>

</xs:element>
</xs:schema>
elementFormDefault="qualified" means that the default is to put in the namespace name.
attributeFormDefault="unqualified" means that the default is to not use te nmespace name for attributes.
Any XML Schema is defined in an Xml Schema Definition or .xsd It consists of a sequence of various kinds of definitions. In the words of the w3.org:

Schema component is the generic term for the building blocks that comprise the abstract data model of the schema. [Definition:] An XML Schema is a set of ·schema components·. There are 13 kinds of components in all, falling into three groups. The primary components, which may (type definitions) or must (element and attribute declarations) have names are as follows:

· Simple type definitions

· Complex type definitions

· Attribute declarations

· Element declarations

The secondary components, which must have names, are as follows:

· Attribute group definitions

· Identity-constraint definitions

· Model group definitions

· Notation declarations

Finally, the "helper" components provide small parts of other components; they are not independent of their context:

· Annotations

· Model groups

· Particles

· Wildcards

· Attribute Uses

6. We won’t get thru all of these kinds of definitions, but you have just seen the definition of an element of a simple type. The general form is

<xs:element name=”NameOfElement” type=”TypeOfElement”>

If you are using one of the 40+ types the w3.org has defined then the type of the element is of the form xs:elementType (e.g. xs:string or xs:integer.)

7. The next most complicated kind of element is one which has (a sequence of) children. The form is:
<xsd:element name="Book">

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element ref="Title" minOccurs="1" maxOccurs="1"/>

 <xsd:element ref="Author" minOccurs="1" maxOccurs="1"/>

 <xsd:element ref="Date" minOccurs="1" maxOccurs="1"/>

 <xsd:element ref="ISBN" minOccurs="1" maxOccurs="1"/>

 <xsd:element ref="Publisher" minOccurs="1" maxOccurs="1"/>

 </xsd:sequence>

 </xsd:complexType>

 </xsd:element>
(where, here, Costello used xsd rather than xs, for the reference to the w3.org Schema URL).

8. Notice that

a. The element is named, but no type is given, in the first tag.

b. Next the element is defined to be of complex type

c. Them we tell the parser that there will be a sequence of child elements

d. For each child we say how it is referred to (that is the ref=”childName “)
e. We then close the tags in the proper order (reversing the order in which we opened them.)

f. The child elements are then defined below the parent element. They may be simple or complex types.
g. Attributes are defined at the end of the sequence of child elements (but still inside the complex type. For example

<xsd:element name="Book">

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element ref="Title" minOccurs="1" maxOccurs="1"/>

 <xsd:element ref="Author" minOccurs="1" maxOccurs="1"/>

 <xsd:element ref="Date" minOccurs="1" maxOccurs="1"/>

 <xsd:element ref="ISBN" minOccurs="1" maxOccurs="1"/>

 <xsd:element ref="Publisher" minOccurs="1" maxOccurs="1"/>

 </xsd:sequence>
 <xsd:attribute name=”edition” type=”xsd:integer”>
 </xsd:complexType>

 </xsd:element>

9. You may also define the child elements (if they are quite simple) inline:

 <xsd:element name="Book" maxOccurs="unbounded">

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element name="Title" type="xsd:string"/>

 <xsd:element name="Author" type="xsd:string"/>

 <xsd:element name="Date" type="xsd:string"/>

 <xsd:element name="ISBN" type="xsd:string"/>

 <xsd:element name="Publisher" type="xsd:string"/>

 </xsd:sequence>

 </xsd:complexType>

 </xsd:element>

10. If you omit minOccurs or maxOccurs, it will default to 1. In addition to using an integer for minOccurs or maxOccurs you may also use the value “unbounded”.

11. A list of all te pre-defined types may be found at

Here is a complete and valid schema:

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified" attributeFormDefault="unqualified">

<xs:element name="Library">

<xs:annotation>

<xs:documentation>A library is a collection of one or more Books</xs:documentation>

</xs:annotation>

<xs:complexType>

<xs:sequence>

 <xs:element ref="Book" maxOccurs="unbounded" ></xs:element>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="Book">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="Title" type="xs:string"/>
 <xs:element name="Author" type="xs:string"/>
 <xs:element name="Date" type="xs:string"/>
 <xs:element name="ISBN" type="xs:string"/>
 <xs:element name="Publisher" type="xs:string"/>
 </xs:sequence>
 </xs:complexType>

</xs:element>
</xs:schema>

NOTE: When you copy and paste an example which uses xsd into XMLSpy, you must either change its xmlns (and all subsequent uses of xs) to xsd, or change all your xsd’s to xs (including xsd:string etc.)

Further examples may be found at http://www.w3.org/TR/xmlschema-0/#po.xsd
Next we will talk about enumeration types and types defined by restriction (e.g. a month is an integer between 1 and 12.)
