XML Notes 5 – continuing Schemas
From before: PI = processing instruction

<?TargetApplication more_info_in attributes ?>

Examples:

<?xml version=”1.0” encoding=”UTF-8”?>

<?xml-stylesheet type=”text/xsl” href=”…”?>

Elements vs. attributes - again
Enumeration lists:

· When you use DTDs , a finite list MUST be in an attribute

· When you use schemas, such a list may be in an attribute OR in an enumeration

· When you want a DEFAULT value – whether in DTDs or Schemas – it MUST be in an attribute.

IDs and IDREF(S)

· Always in attributes
Allow multiple occurrences

· Always in elements
Namespaces

A namespace is a way to distinguish different elements and to avoid naming collisions.

Look at Roger Costello’s Namespaces PPT – slides 20, 23-29
From www.w3schoools.org: at http://www.w3schools.com/xml/xml_namespaces.asp
Name Conflicts

Since element names in XML are not fixed, very often a name conflict will occur when two different documents use the same names describing two different types of elements.

This XML document carries information in a table:

	<table>

 <tr>

 <td>Apples</td>

 <td>Bananas</td>

 </tr>

</table>

This XML document carries information about a table (a piece of furniture):

	<table>

 <name>African Coffee Table</name>

 <width>80</width>

 <length>120</length>

</table>

If these two XML documents were added together, there would be an element name conflict because both documents contain a <table> element with different content and definition.

Solving Name Conflicts using a Prefix

This XML document carries information in a table:

	<h:table>

 <h:tr>

 <h:td>Apples</h:td>

 <h:td>Bananas</h:td>

 </h:tr>

</h:table>

This XML document carries information about a piece of furniture:

	<f:table>

 <f:name>African Coffee Table</f:name>

 <f:width>80</f:width>

 <f:length>120</f:length>

</f:table>

Now the element name conflict is gone because the two documents use a different name for their <table> element (<h:table> and <f:table>).

By using a prefix, we have created two different types of <table> elements.

Using Namespaces

This XML document carries information in a table:

	<h:table xmlns:h="http://www.w3.org/TR/html4/">

 <h:tr>

 <h:td>Apples</h:td>

 <h:td>Bananas</h:td>

 </h:tr>

</h:table>

This XML document carries information about a piece of furniture:

	<f:table xmlns:f="http://www.w3schools.com/furniture">

 <f:name>African Coffee Table</f:name>

 <f:width>80</f:width>

 <f:length>120</f:length>

</f:table>

Instead of using only prefixes, an xmlns attribute has been added to the <table> tag to give the element prefix a qualified name associated with a namespace.

The Namespace Attribute

The namespace attribute is placed in the start tag of an element and has the following syntax:

	xmlns:namespace-prefix="namespace"

In the examples above, the namespace itself is defined using an Internet address:

	xmlns:f="http://www.w3schools.com/furniture"

The W3C namespace specification states that the namespace itself should be a Uniform Resource Identifier (URI).

When a namespace is defined in the start tag of an element, all child elements with the same prefix are associated with the same namespace.

Note that the address used to identify the namespace, is not used by the parser to look up information. The only purpose is to give the namespace a unique name. However, very often companies use the namespace as a pointer to a real Web page containing information about the namespace.
Try to go to http://www.w3.org/TR/html4/.

Uniform Resource Identifiers

A Uniform Resource Identifier (URI) is a string of characters which identifies an Internet Resource. The most common URI is the Uniform Resource Locator (URL) which identifies an Internet domain address. Another, not so common type of URI is the Universal Resource Name (URN). In our examples we will only use URLs.

Since our furniture example uses an internet address to identify its namespace, we can be sure that our namespace is unique.

Default Namespaces

Defining a default namespace for an element saves us from using prefixes in all the child elements. It has the following syntax:

	<element xmlns="namespace">

This XML document carries information in a table:

	<table xmlns="http://www.w3.org/TR/html4/">

 <tr>

 <td>Apples</td>

 <td>Bananas</td>

 </tr>

</table>

This XML document carries information about a piece of furniture:

	<table xmlns="http://www.w3schools.com/furniture">

 <name>African Coffee Table</name>

 <width>80</width>

 <length>120</length>

</table>

Namespaces in Real Use

When you start using XSL, you will soon see namespaces in real use. XSL style sheets are used to transform XML documents into other formats like HTML.

If you take a close look at the XSL document below, you will see that most of the tags are HTML tags. The tags that are not HTML tags have the prefix xsl, identified by the namespace "http://www.w3.org/TR/xsl":

	<?xml version="1.0" encoding="ISO-8859-1"?>

<xsl:stylesheet xmlns:xsl="http://www.w3.org/TR/xsl">

<xsl:template match="/">

 <html>

 <body>

 <table border="2" bgcolor="yellow">

 <tr>

 <th>Title</th>

 <th>Artist</th>

 </tr>

 <xsl:for-each select="CATALOG/CD">

 <tr>

 <td><xsl:value-of select="TITLE"/></td>

 <td><xsl:value-of select="ARTIST"/></td>

 </tr>

 </xsl:for-each>

 </table>

 </body>

 </html>

</xsl:template>

</xsl:stylesheet>

Schemas

Recall:

· Schema is always the root element

· xs or xsd always linked to w3.org for schemas as in:
<xsd:schema xmlns:xsd=http://www.w3.org/2001/10/XMLSchema>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified" attributeFormDefault="unqualified">
· You may also add a targetNamespace=”….” If you need to refer to the elements and attributes you are defining in here.

· A simple element is defined with

<xs element name=”MyElement” type=”xs:built-in-type”>

· A complex element (one with children or attributes) is defined with
<xs:element name=”MyElement” >
 <xs:complexType>

<xs:sequence>

:

 here go the children definitions or refs
 :

</xs:sequence>

 :
 attribute definitions go here

 <xs:attribute name=”whyNot” type=”xs:string”>

:

 </xs:complexType>
 </xs:element name>

· If you use refs above, then you still need the element definitions for the children here.

· When you declare an element with a ref then it is a global, so it may be re-used.
· You may also give a name to a complex type (see slides 42-45 of PowerPoint on Schemas)
· There are actually 3 ways to define a complex element

· Inlining or anonymous type

· Ref to a global complex element

· Spcifying it as having a global complex type.

The anonymous type is fast, and makes all the children local – i.e. you may not refer to them outside the parent.

The global complex element introduces a global variable – a change to it in one place will propagate throughout an xml (instance) document, for example. Some people think it is there mainly for backwards compatibility with DTDs, however I can imagine a situation where it would be useful. For instance, in a system of libraries with inter-library loans each library might have aglobal element which described that library.

The global complex type is the most flexible. The type may be re-used and also may be extended to declare new types which inherit all the elements and attributes of the base type.

If you are not sure which to use, use the global complex type. Please also see the XML_Notes_7.

· Let’s look at the built in datatypes.
Datatypes

First of all w3.org distinguishes between the value space and the lexical space for a data type.

The value space is the set of possible values.

The lexical space is the set of possible strings which represent a value.

For example, in the float data type, the value 100 may represented by either of the lexical strings "100" and "1.0E2". Dates, of course, also have different (lexical) representations.

Datatypes may be atomic, or list or union (non of which exist yet.)
Atomic types are indivisible. In a list the items are separated by spaces.
A dataype may be derived from another dataype by restricting the values which may occur (integers between 1 and 12) or by making them match a pattern (which also covers enumerations) or (for lists) by specifying the length of a list. (For example, a bridgeTable might be a list of 4 numbers between 1 and 240, each referring to an entrant in a contest.)

The primitive data types are:

3.2 Primitive datatypes

 3.2.1 string
 3.2.2 boolean -can have the following legal literals {true, false, 1, 0}.
 3.2.3 decimal – must handle up to 18 digits. (i.e.x1....xi. xi+1....xk where k<=18;

 you must have at least one digit on each side of the decimal point;

 otherwise no leading or trailing 0’s

 Note: that integer is derived from decimal
 3.2.4 float - float is patterned after the IEEE single-precision 32-bit floating point

 type [IEEE 754-1985]. The basic ·value space· of float consists of the

 values m × 2^e, where m is an integer whose absolute value is less than

 2^24, and e is an integer between -149 and 104, inclusive. I
 3.2.5 double
 3.2.6 duration
 3.2.7 dateTime dateTime values may be viewed as objects with integer-valued year,
 month, day, hour and minute properties, a decimal-valued second
 property, and a boolean timezoned property. Each such object also has
 one decimal-valued method or computed property, timeOnTimeline,
 whose value is always a decimal number; the values are dimensioned in
 seconds, the integer 0 is 0001-01-01T00:00:00 and the value of
 timeOnTimeline for other dateTime values is computed using the
 \Gregorian algorithm as modified for leap-seconds. The
 timeOnTimeline values form two related "timelines", one for timezoned
 values and one for non-timezoned values. Each timeline is a copy of
 the ·value space· of decimal, with integers given units of seconds.
 3.2.8 time
 3.2.9 date - also see Powerpoint slides 49-50
 3.2.10 gYearMonth -[Definition:] gYearMonth represents a specific gregorian
 month in a specific gregorian year. The ·value space· of
 gYearMonth is the set of Gregorian calendar months as defined
 in § 5.2.1 of [ISO 8601]. Specifically, it is a set of one-month
 long, non-periodic instances e.g. 1999-10 to represent the whole
 month of 1999-10, independent of how many days this month has.

 3.2.11 gYear
 3.2.12 gMonthDay
 3.2.13 gDay
 3.2.14 gMonth
 3.2.15 hexBinary
 3.2.16 base64Binary
 3.2.17 anyURI
 3.2.18 QName
 3.2.19 NOTATION
Various data types may be constrained by “facets” such as length, pattern, enumeration, etc.
Built-in datatypes

[image: image1.png]
For example: int is ·derived· from long by setting the value of ·maxInclusive· to be 2147483647 and ·minInclusive· to be -2147483648. The ·base type· of int is long.
One may also use the facets to define new types on one’s own (and then define an element or attribute to have that type.) For example (this is all from the w3.org):

Example

The following example is a datatype definition for a ·user-derived· datatype which limits the values of dates to the three US holidays enumerated. This datatype definition would appear in a schema authored by an "end-user" and shows how to define a datatype by enumerating the values in its ·value space·. The enumerated values must be type-valid literals for the ·base type·.

<simpleType name='holidays'>

 <annotation>

 <documentation>some US holidays</documentation>

 </annotation>

 <restriction base='gMonthDay'>

 <enumeration value='--01-01'>

 <annotation>

 <documentation>New Year's day</documentation>

 </annotation>

 </enumeration>

 <enumeration value='--07-04'>

 <annotation>

 <documentation>4th of July</documentation>

 </annotation>

 </enumeration>

 <enumeration value='--12-25'>

 <annotation>

 <documentation>Christmas</documentation>

 </annotation>

 </enumeration>

 </restriction>

</simpleType>

Regular expressions (such as you learned in Perl) may be used to restrict a type toa certain pattern.

Example

The following is the definition of a ·user-derived· datatype which is a better representation of postal codes in the United States, by limiting strings to those which are matched by a specific ·regular expression·.

<simpleType name='better-us-zipcode'>

 <restriction base='string'>

 <pattern value='[0-9]{5}(-[0-9]{4})?'/>

 </restriction>

</simpleType>

