XML Notes 6 – Selections from the XML Primer at w3c.org

Suppose we wish to create a new type of integer called myInteger whose range of values is between 10000 and 99999 (inclusive). We base our definition on the built-in simple type integer, whose range of values also includes integers less than 10000 and greater than 99999. To define myInteger, we restrict the range of the integer base type by employing two facets called minInclusive and maxInclusive:

Example

Defining myInteger, Range 10000-99999

<xsd:simpleType name="myInteger">

 <xsd:restriction base="xsd:integer">

 <xsd:minInclusive value="10000"/>

 <xsd:maxInclusive value="99999"/>

 </xsd:restriction>

</xsd:simpleType>

The example shows one particular combination of a base type and two facets used to define myInteger, but a look at the list of built-in simple types and their facets (Appendix B) should suggest other viable combinations.

The purchase order schema contains another, more elaborate, example of a simple type definition. A new simple type called SKU is derived (by restriction) from the simple type string. Furthermore, we constrain the values of SKU using a facet called pattern in conjunction with the regular expression "\d{3}-[A-Z]{2}" that is read "three digits followed by a hyphen followed by two upper-case ASCII letters":

Example

Defining the Simple Type "SKU"

<xsd:simpleType name="SKU">

 <xsd:restriction base="xsd:string">

 <xsd:pattern value="\d{3}-[A-Z]{2}"/>

 </xsd:restriction>

</xsd:simpleType>

This regular expression language is described more fully in Appendix D.

XML Schema defines twelve facets which are listed in Appendix B. Among these, the enumeration facet is particularly useful and it can be used to constrain the values of almost every simple type, except the boolean type. The enumeration facet limits a simple type to a set of distinct values. For example, we can use the enumeration facet to define a new simple type called USState, derived from string, whose value must be one of the standard US state abbreviations:

Example

Using the Enumeration Facet

<xsd:simpleType name="USState">

 <xsd:restriction base="xsd:string">

 <xsd:enumeration value="AK"/>

 <xsd:enumeration value="AL"/>

 <xsd:enumeration value="AR"/>

 <!-- and so on ... -->

 </xsd:restriction>

</xsd:simpleType>

USState would be a good replacement for the string type currently used in the state element declaration. By making this replacement, the legal values of a state element, i.e. the state subelements of billTo and shipTo, would be limited to one of AK, AL, AR, etc. Note that the enumeration values specified for a particular type must be unique.

2.3.1 List Types

XML Schema has the concept of a list type, in addition to the so-called atomic types that constitute most of the types listed in Table 2. (Atomic types, list types, and the union types described in the next section are collectively called simple types.) The value of an atomic type is indivisible from XML Schema's perspective. For example, the NMTOKEN value US is indivisible in the sense that no part of US, such as the character "S", has any meaning by itself. In contrast, list types are comprised of sequences of atomic types and consequently the parts of a sequence (the "atoms") themselves are meaningful. For example, NMTOKENS is a list type, and an element of this type would be a white-space delimited list of NMTOKEN's, such as "US UK FR". XML Schema has three built-in list types, they are NMTOKENS, IDREFS, and ENTITIES.

In addition to using the built-in list types, you can create new list types by derivation from existing atomic types. (You cannot create list types from existing list types, nor from complex types.) For example, to create a list of myInteger's:

Example

Creating a List of myInteger's

<xsd:simpleType name="listOfMyIntType">

 <xsd:list itemType="myInteger"/>

</xsd:simpleType>

And an element in an instance document whose content conforms to listOfMyIntType is:

Example

<listOfMyInt>20003 15037 95977 95945</listOfMyInt>

Several facets can be applied to list types: length, minLength, maxLength, pattern, and enumeration. For example, to define a list of exactly six US states (SixUSStates), we first define a new list type called USStateList from USState, and then we derive SixUSStates by restricting USStateList to only six items:

Example

List Type for Six US States

<xsd:simpleType name="USStateList">

 <xsd:list itemType="USState"/>

</xsd:simpleType>

<xsd:simpleType name="SixUSStates">

 <xsd:restriction base="USStateList">

 <xsd:length value="6"/>

 </xsd:restriction>

</xsd:simpleType>

Elements whose type is SixUSStates must have six items, and each of the six items must be one of the (atomic) values of the enumerated type USState, for example:

Example

<sixStates>PA NY CA NY LA AK</sixStates>

Note that it is possible to derive a list type from the atomic type string. However, a string may contain white space, and white space delimits the items in a list type, so you should be careful using list types whose base type is string. For example, suppose we have defined a list type with a length facet equal to 3, and base type string, then the following 3 item list is legal:

Example

Asie Europe Afrique

But the following 3 "item" list is illegal:

Example

Asie Europe Amérique Latine

Even though "Amérique Latine" may exist as a single string outside of the list, when it is included in the list, the whitespace between Amérique and Latine effectively creates a fourth item, and so the latter example will not conform to the 3-item list type.

2.5.1 Complex Types from Simple Types

Let us first consider how to declare an element that has an attribute and contains a simple value. In an instance document, such an element might appear as:

Example

<internationalPrice currency="EUR">423.46</internationalPrice>

The purchase order schema declares a USPrice element that is a starting point:

Example

<xsd:element name="USPrice" type="decimal"/>

Now, how do we add an attribute to this element? As we have said before, simple types cannot have attributes, and decimal is a simple type. Therefore, we must define a complex type to carry the attribute declaration. We also want the content to be simple type decimal. So our original question becomes: How do we define a complex type that is based on the simple type decimal? The answer is to derive a new complex type from the simple type decimal:

Example

Deriving a Complex Type from a Simple Type

<xsd:element name="internationalPrice">

 <xsd:complexType>

 <xsd:simpleContent>

 <xsd:extension base="xsd:decimal">

 <xsd:attribute name="currency" type="xsd:string"/>

 </xsd:extension>

 </xsd:simpleContent>

 </xsd:complexType>

</xsd:element>

We use the complexType element to start the definition of a new (anonymous) type. To indicate that the content model of the new type contains only character data and no elements, we use a simpleContent element. Finally, we derive the new type by extending the simple decimal type. The extension consists of adding a currency attribute using a standard attribute declaration. (We cover type derivation in detail in Advanced Concepts II: The International Purchase Order (§4).) The internationalPrice element declared in this way will appear in an instance as shown in the example at the beginning of this section.

2.2.2 Global Elements & Attributes

Global elements, and global attributes, are created by declarations that appear as the children of the schema element. Once declared, a global element or a global attribute can be referenced in one or more declarations using the ref attribute as described above. A declaration that references a global element enables the referenced element to appear in the instance document in the context of the referencing declaration. So, for example, the comment element appears in po.xml at the same level as the shipTo, billTo and items elements because the declaration that references comment appears in the complex type definition at the same level as the declarations of the other three elements.

The declaration of a global element also enables the element to appear at the top-level of an instance document. Hence purchaseOrder, which is declared as a global element in po.xsd, can appear as the top-level element in po.xml. Note that this rationale will also allow a comment element to appear as the top-level element in a document like po.xml.

There are a number of caveats concerning the use of global elements and attributes. One caveat is that global declarations cannot contain references; global declarations must identify simple and complex types directly. Put concretely, global declarations cannot contain the ref attribute, they must use the type attribute (or, as we describe shortly, be followed by an anonymous type definition). A second caveat is that cardinality constraints cannot be placed on global declarations, although they can be placed on local declarations that reference global declarations. In other words, global declarations cannot contain the attributes minOccurs, maxOccurs, or use.

2.2.1 Occurrence Constraints

The comment element is optional within PurchaseOrderType because the value of the minOccurs attribute in its declaration is 0. In general, an element is required to appear when the value of minOccurs is 1 or more. The maximum number of times an element may appear is determined by the value of a maxOccurs attribute in its declaration. This value may be a positive integer such as 41, or the term unbounded to indicate there is no maximum number of occurrences. The default value for both the minOccurs and the maxOccurs attributes is 1. Thus, when an element such as comment is declared without a maxOccurs attribute, the element may not occur more than once. Be sure that if you specify a value for only the minOccurs attribute, it is less than or equal to the default value of maxOccurs, i.e. it is 0 or 1. Similarly, if you specify a value for only the maxOccurs attribute, it must be greater than or equal to the default value of minOccurs, i.e. 1 or more. If both attributes are omitted, the element must appear exactly once.

Attributes may appear once or not at all, but no other number of times, and so the syntax for specifying occurrences of attributes is different than the syntax for elements. In particular, attributes can be declared with a use attribute to indicate whether the attribute is required (see for example, the partNum attribute declaration in po.xsd), optional, or even prohibited.

Default values of both attributes and elements are declared using the default attribute, although this attribute has a slightly different consequence in each case. When an attribute is declared with a default value, the value of the attribute is whatever value appears as the attribute's value in an instance document; if the attribute does not appear in the instance document, the schema processor provides the attribute with a value equal to that of the default attribute. Note that default values for attributes only make sense if the attributes themselves are optional, and so it is an error to specify both a default value and anything other than a value of optional for use.

The schema processor treats defaulted elements slightly differently. When an element is declared with a default value, the value of the element is whatever value appears as the element's content in the instance document; if the element appears without any content, the schema processor provides the element with a value equal to that of the default attribute. However, if the element does not appear in the instance document, the schema processor does not provide the element at all. In summary, the differences between element and attribute defaults can be stated as: Default attribute values apply when attributes are missing, and default element values apply when elements are empty.

The fixed attribute is used in both attribute and element declarations to ensure that the attributes and elements are set to particular values. For example, po.xsd contains a declaration for the country attribute, which is declared with a fixed value US. This declaration means that the appearance of a country attribute in an instance document is optional (the default value of use is optional), although if the attribute does appear, its value must be US, and if the attribute does not appear, the schema processor will provide a country attribute with the value US. Note that the concepts of a fixed value and a default value are mutually exclusive, and so it is an error for a declaration to contain both fixed and default attributes.

