XML Notes 8 – XSL
XSL has several components and related pieces:

· XSL stands for XML Style Language (It is the umbrellas technology)

· XSLT stands for XML Style Language Transformations
(or XSL Transformations). It is used to change (transform) one XML document into another, or a document in another language such as XHTML, or to sort, filter, or reorder you original document.

XSLT stylesheets are written in XML.

There are issues with browser support.

· Netscape 7 fully supports XSL; Netscape 6 partially supports it

· I.E. 6 fully supports XSL; I.E. 5 and 5.5 do not.

· XSL-FO stands for XSL – Formatting Objects. It is a superset of CSS, and XSL is now its official name (as of 3 years ago), though you will still see XSL-FO mentioned (e.g. in book titles).

You will also see FO used as the prefix in styling documents.

· XPath, which is not strictly part of XSL, is a language for navigating around XML documents.

XSLT uses XPath to navigate the source tree (input XML document) to produce a result tree (output XML document.)

As you know, XML documents are trees. So XPath allows you to travel around the tree, looking for certain elements, attributes, etc.

XPath is not written in XML.

· XQuery is used in conjunction with XPath to make queries about the contents of your XML instance document.
XPath Tutorial from w3school.com
http://www.w3schools.com/xpath/default.asp

What is XPath?

· XPath is a syntax for defining parts of an XML document

· XPath uses paths to define XML elements

· XPath defines a library of standard functions

· XPath is a major element in XSLT

· XPath is not written in XML

· XPath is a W3C Standard

Like Traditional File Paths

XPath uses path expressions to identify nodes in an XML document. These path expressions look very much like the expressions you see when you work with a computer file system:

	w3schools/xpath/default.asp

XPath Example

Look at this simple XML document:

	<?xml version="1.0" encoding="ISO-8859-1"?>

<catalog>

 <cd country="USA">

 <title>Empire Burlesque</title>

 <artist>Bob Dylan</artist>

 <price>10.90</price>

 </cd>

 <cd country="UK">

 <title>Hide your heart</title>

 <artist>Bonnie Tyler</artist>

 <price>9.90</price>

 </cd>

 <cd country="USA">

 <title>Greatest Hits</title>

 <artist>Dolly Parton</artist>

 <price>9.90</price>

 </cd>

</catalog>

The XPath expression below selects the ROOT element catalog:

	/catalog

The XPath expression below selects all the cd elements of the catalog element:

	/catalog/cd

The XPath expression below selects all the price elements of all the cd elements of the catalog element:

	/catalog/cd/price

Note: If the path starts with a slash (/) it represents an absolute path to an element!

XPath Defines a Library of Standard Functions

XPath defines a library of standard functions for working with strings, numbers and Boolean expressions.

The XPath expression below selects all the cd elements that have a price element with a value larger than 10.80:

	/catalog/cd[price>10.80]

XPath is Used in XSLT

XPath is a major element of the XSLT standard. Without XPath knowledge you will not be able to create XSLT documents.

Locating Nodes

XML documents can be represented as a tree view of nodes (very similar to the tree view of folders you can see on your computer).

XPath uses a pattern expression to identify nodes in an XML document. An XPath pattern is a slash-separated list of child element names that describe a path through the XML document. The pattern "selects" elements that match the path.

The following XPath expression selects all the price elements of all the cd elements of the catalog element:

	/catalog/cd/price

Note: If the path starts with a slash (/) it represents an absolute path to an element!

Note: If the path starts with two slashes (//) then all elements in the document that fulfill the criteria will be selected (even if they are at different levels in the XML tree)!

The following XPath expression selects all the cd elements in the document:

	//cd

Selecting Unknown Elements

Wildcards (*) can be used to select unknown XML elements.

The following XPath expression selects all the child elements of all the cd elements of the catalog element:

	/catalog/cd/*

The following XPath expression selects all the price elements that are grandchild elements of the catalog element:

	/catalog/*/price

The following XPath expression selects all price elements which have 2 ancestors:

	/*/*/price

The following XPath expression selects all elements in the document:

	//*

Selecting Branches

By using square brackets in an XPath expression you can specify an element further.

The following XPath expression selects the first cd child element of the catalog element:

	/catalog/cd[1]

The following XPath expression selects the last cd child element of the catalog element (Note: There is no function named first()):

	/catalog/cd[last()]

The following XPath expression selects all the cd elements of the catalog element that have a price element:

	/catalog/cd[price]

The following XPath expression selects all the cd elements of the catalog element that have a price element with a value of 10.90:

	/catalog/cd[price=10.90]

The following XPath expression selects all the price elements of all the cd elements of the catalog element that have a price element with a value of 10.90:

	/catalog/cd[price=10.90]/price

Selecting Several Paths

By using the | operator in an XPath expression you can select several paths.

The following XPath expression selects all the title and artist elements of the cd element of the catalog element:

	/catalog/cd/title | /catalog/cd/artist

The following XPath expression selects all the title and artist elements in the document:

	//title | //artist

The following XPath expression selects all the title, artist and price elements in the document:

	//title | //artist | //price

The following XPath expression selects all the title elements of the cd element of the catalog element, and all the artist elements in the document:

	/catalog/cd/title | //artist

Selecting Attributes

In XPath all attributes are specified by the @ prefix.

This XPath expression selects all attributes named country:

	//@country

This XPath expression selects all cd elements which have an attribute named country:

	//cd[@country]

This XPath expression selects all cd elements which have any attribute:

	//cd[@*]

This XPath expression selects all cd elements which have an attribute named country with a value of 'UK':

	//cd[@country='UK']

XPath allows you to define a set of locations from where you are as you navigate the tree of your document. (For example, select all the children, all the ancestors, all the attributes etc.) See http://www.w3schools.com/xpath/xpath_location.asp for more information.
XPath also has a set of built in functions for finding and comparing values, constructing Boolean expressions (e.g. select this node if its child named price is more than 20.00 and its taxFree attribute is true). See http://www.w3schools.com/xpath/xpath_functions.asp and http://www.w3schools.com/xpath/xpath_expressions.asp for details, and http://www.w3schools.com/xpath/xpath_examples.asp for examples.

See http://www.zvon.org/xxl/XPathTutorial/General/examples.html for another tutorial, with a summary on the left, or http://www.vbxml.com/xsl/tutorials/intro/default.asp#instructions for XPath and XSLT tutorials.

XSLT and XSL Stylesheets
As you are about to see,

1. You create an xsl stylesheet and link to it in your xml (instance) document.

2. Your xsl stylesheet contains a template element which specifies what kind of elements in your xml document are to be styled and how to style them.
3. Typically you will use a for-each loop to traverse your document tree and then select on certain values (specified with XPath) to choose the elements to style.

4. Transformations may be done client-side in an XSL-compliant browser or server-side, even doing different transformations for different kinds of browsers (e.g. Braille, aural, etc.)
Here is what w3schools.com says in its XSLT tutorial:

http://www.w3schools.com/xsl/xsl_transformation.asp

Correct Style Sheet Declaration

The root element that declares the document to be an XSL style sheet is <xsl:stylesheet> or <xsl:transform>.

Note: <xsl:stylesheet> and <xsl:transform> are completely synonymous and either can be used!

The correct way to declare an XSL style sheet according to the W3C XSLT Recommendation is:

	<xsl:stylesheet version="1.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

or:

	<xsl:transform version="1.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

Note: The xmlns:xsl="http://www.w3.org/1999/XSL/Transform" identifies the official W3C XSL recommendation namespace. If you use this namespace, you must also include the attribute version="1.0".

Note: If you are using IE 6.0 or Netscape 6 you should use one of the codes above.

Incorrect Style Sheet Declaration

This was the correct way to declare an XSL style sheet according to the W3C XSL Working Draft:

	<xsl:stylesheet

xmlns:xsl="http://www.w3.org/TR/WD-xsl">

Note: The declaration above is OUTDATED, but if you are using IE 5 you should use the (incorrect) code above.

Start with your XML Document

We want to transform the following XML document ("cdcatalog.xml") into XHTML:

	<?xml version="1.0" encoding="ISO-8859-1"?>

<catalog>

 <cd>

 <title>Empire Burlesque</title>

 <artist>Bob Dylan</artist>

 <country>USA</country>

 <company>Columbia</company>

 <price>10.90</price>

 <year>1985</year>

 </cd>

.

.

.

</catalog>

To view an XML / XSL document in IE 5.0 (and higher) and Netscape 7 you can click on a link, type the URL in the address bar, or double-click on the name of an XML file in a files folder.

To view an XML / XSL document in Netscape 6 you'll have to open the XML file and then right-click in XML file and select "View Page Source".

View XML file

Create an XSL Style Sheet

Then you create an XSL Style Sheet ("cdcatalog.xsl") with a transformation template:

	<?xml version="1.0" encoding="ISO-8859-1"?>

<xsl:stylesheet version="1.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:template match="/">

 <html>

 <body>

 <h2>My CD Collection</h2>

 <table border="1">

 <tr bgcolor="#9acd32">

 <th align="left">Title</th>

 <th align="left">Artist</th>

 </tr>

 <xsl:for-each select="catalog/cd">

 <tr>

 <td><xsl:value-of select="title"/></td>

 <td><xsl:value-of select="artist"/></td>

 </tr>

 </xsl:for-each>

 </table>

 </body>

 </html>

</xsl:template>

</xsl:stylesheet>

View XSL file

Link the XSL Style Sheet to the XML Document

Finally, add an XSL Style Sheet reference to your XML document ("cdcatalog.xml"):

	<?xml version="1.0" encoding="ISO-8859-1"?>

<?xml-stylesheet type="text/xsl" href="cdcatalog.xsl"?>

<catalog>

 <cd>

 <title>Empire Burlesque</title>

 <artist>Bob Dylan</artist>

 <country>USA</country>

 <company>Columbia</company>

 <price>10.90</price>

 <year>1985</year>

 </cd>

.

.

.

</catalog>

If you have an XSLT compliant browser it will nicely transform your XML into XHTML!

View the result in IE 6 or Netscape 6 and 7:

My CD Collection

	Title
	Artist

	Empire Burlesque
	Bob Dylan

	Hide your heart
	Bonnie Tyler

	Greatest Hits
	Dolly Parton

	Still got the blues
	Gary Moore

	Eros
	Eros Ramazzotti

	One night only
	Bee Gees

	Sylvias Mother
	Dr.Hook

	Maggie May
	Rod Stewart

	Romanza
	Andrea Bocelli

	When a man loves a woman
	Percy Sledge

	Black angel
	Savage Rose

	1999 Grammy Nominees
	Many

	For the good times
	Kenny Rogers

	Big Willie style
	Will Smith

	Tupelo Honey
	Van Morrison

	Soulsville
	Jorn Hoel

	The very best of
	Cat Stevens

	Stop
	Sam Brown

	Bridge of Spies
	T`Pau

	Private Dancer
	Tina Turner

	Midt om natten
	Kim Larsen

	Pavarotti Gala Concert
	Luciano Pavarotti

	The dock of the bay
	Otis Redding

	Picture book
	Simply Red

	Red
	The Communards

	Unchain my heart
	Joe Cocker

An XSL style sheet consists of a set of rules called templates.

Each <xsl:template> element contains rules to apply when a specified node is matched.

XSLT uses Templates

The <xsl:template> element contains rules to apply when a specified node is matched.

The match attribute is used to associate the template with an XML element. The match attribute can also be used to define a template for a whole branch of the XML document (i.e. match="/" defines the whole document).

The following XSL Style Sheet contains a template to output the XML CD Catalog from the previous chapter:

	<?xml version="1.0" encoding="ISO-8859-1"?>

<xsl:stylesheet version="1.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:template match="/">

 <html>

 <body>

 <h2>My CD Collection</h2>

 <table border="1">

 <tr bgcolor="#9acd32">

 <th>Title</th>

 <th>Artist</th>

 </tr>

 <tr>

 <td>.</td>

 <td>.</td>

 </tr>

 </table>

 </body>

 </html>

</xsl:template>

</xsl:stylesheet>

Since the style sheet is an XML document itself, the document begins with an xml declaration: <?xml version="1.0" encoding="ISO-8859-1"?>.

The <xsl:stylesheet> tag defines the start of the style sheet.

The <xsl:template> tag defines the start of a template. The match="/" attribute associates (matches) the template to the root (/) of the XML source document.

The rest of the document contains the template itself, except for the last two lines that defines the end of the template and the end of the style sheet.

The result of the transformation will look (a little disappointing) like this:

My CD Collection

	Title
	Artist

	.
	.

If you have Netscape 6 or IE 5 or higher you can view: the XML file, the XSL file, and the result
The result from this example was a little disappointing, because no data was copied from the XML document to the output.

The <xsl:value-of> element extracts the value of a selected node.

The <xsl:value-of> Element

The <xsl:value-of> element can be used to select the value of an XML element and add it to the output stream of the transformation:

	<?xml version="1.0" encoding="ISO-8859-1"?>

<xsl:stylesheet version="1.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:template match="/">

 <html>

 <body>

 <h2>My CD Collection</h2>

 <table border="1">

 <tr bgcolor="#9acd32">

 <th>Title</th>

 <th>Artist</th>

 </tr>

 <tr>

 <td><xsl:value-of select="catalog/cd/title"/></td>

 <td><xsl:value-of select="catalog/cd/artist"/></td>

 </tr>

 </table>

 </body>

 </html>

</xsl:template>

</xsl:stylesheet>

Note: The value of the required select attribute contains an XPath expression. It works like navigating a file system where a forward slash (/) selects subdirectories.

The Result

The result of the transformation will look like this:

My CD Collection

	Title
	Artist

	Empire Burlesque
	Bob Dylan

If you have Netscape 6 or IE 5 or higher you can view the XML file and the XSL file
View the result in IE 6 or Netscape 6 and 7
View the result in IE 5
The result from this example was also a little disappointing, because only one line of data was copied from the XML document to the output.

The <xsl:for-each> element allows you to do looping in XSLT.

The <xsl:for-each> Element

The XSL <xsl:for-each> element can be used to select every XML element of a specified node set:

	<?xml version="1.0" encoding="ISO-8859-1"?>

<xsl:stylesheet version="1.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:template match="/">

 <html>

 <body>

 <h2>My CD Collection</h2>

 <table border="1">

 <tr bgcolor="#9acd32">

 <th>Title</th>

 <th>Artist</th>

 </tr>

 <xsl:for-each select="catalog/cd">

 <tr>

 <td><xsl:value-of select="title"/></td>

 <td><xsl:value-of select="artist"/></td>

 </tr>

 </xsl:for-each>

 </table>

 </body>

 </html>

</xsl:template>

</xsl:stylesheet>

Note: The value of the required select attribute contains an XPath expression. It works like navigating a file system where a forward slash (/) selects subdirectories.

The Result

The result of the transformation will look like this:

My CD Collection

	Title
	Artist

	Empire Burlesque
	Bob Dylan

	Hide your heart
	Bonnie Tyler

	Greatest Hits
	Dolly Parton

	Still got the blues
	Gary More

	Eros
	Eros Ramazzotti

	One night only
	Bee Gees

	Sylvias Mother
	Dr.Hook

	Maggie May
	Rod Stewart

	Romanza
	Andrea Bocelli

	When a man loves a woman
	Percy Sledge

	Black angel
	Savage Rose

	1999 Grammy Nominees
	Many

	For the good times
	Kenny Rogers

	Big Willie style
	Will Smith

	Tupelo Honey
	Van Morrison

	Soulsville
	Jorn Hoel

	The very best of
	Cat Stevens

	Stop
	Sam Brown

	Bridge of Spies
	T`Pau

	Private Dancer
	Tina Turner

	Midt om natten
	Kim Larsen

	Pavarotti Gala Concert
	Luciano Pavarotti

	The dock of the bay
	Otis Redding

	Picture book
	Simply Red

	Red
	The Communards

	Unchain my heart
	Joe Cocker

Here is the original XML file:

<!-- Edited with XML Spy v4.2 -->

-

<catalog>

-

<cd>

<title>Empire Burlesque</title>

<artist>Bob Dylan</artist>

<country>USA</country>

<company>Columbia</company>

<price>10.90</price>

<year>1985</year>

</cd>

-

<cd>

<title>Hide your heart</title>

<artist>Bonnie Tyler</artist>

<country>UK</country>

<company>CBS Records</company>

<price>9.90</price>

<year>1988</year>

</cd>

-

<cd>

<title>Greatest Hits</title>

<artist>Dolly Parton</artist>

<country>USA</country>

<company>RCA</company>

<price>9.90</price>

<year>1982</year>

</cd>

-

<cd>

<title>Still got the blues</title>

<artist>Gary Moore</artist>

<country>UK</country>

<company>Virgin records</company>

<price>10.20</price>

<year>1990</year>

</cd>

-

<cd>

<title>Eros</title>

<artist>Eros Ramazzotti</artist>

<country>EU</country>

<company>BMG</company>

<price>9.90</price>

<year>1997</year>

</cd>

-

<cd>

<title>One night only</title>

<artist>Bee Gees</artist>

<country>UK</country>

<company>Polydor</company>

<price>10.90</price>

<year>1998</year>

</cd>

-

<cd>

<title>Sylvias Mother</title>

<artist>Dr.Hook</artist>

<country>UK</country>

<company>CBS</company>

<price>8.10</price>

<year>1973</year>

</cd>

-

<cd>

<title>Maggie May</title>

<artist>Rod Stewart</artist>

<country>UK</country>

<company>Pickwick</company>

<price>8.50</price>

<year>1990</year>

</cd>

-

<cd>

<title>Romanza</title>

<artist>Andrea Bocelli</artist>

<country>EU</country>

<company>Polydor</company>

<price>10.80</price>

<year>1996</year>

</cd>

-

<cd>

<title>When a man loves a woman</title>

<artist>Percy Sledge</artist>

<country>USA</country>

<company>Atlantic</company>

<price>8.70</price>

<year>1987</year>

</cd>

-

<cd>

<title>Black angel</title>

<artist>Savage Rose</artist>

<country>EU</country>

<company>Mega</company>

<price>10.90</price>

<year>1995</year>

</cd>

-

<cd>

<title>1999 Grammy Nominees</title>

<artist>Many</artist>

<country>USA</country>

<company>Grammy</company>

<price>10.20</price>

<year>1999</year>

</cd>

-

<cd>

<title>For the good times</title>

<artist>Kenny Rogers</artist>

<country>UK</country>

<company>Mucik Master</company>

<price>8.70</price>

<year>1995</year>

</cd>

-

<cd>

<title>Big Willie style</title>

<artist>Will Smith</artist>

<country>USA</country>

<company>Columbia</company>

<price>9.90</price>

<year>1997</year>

</cd>

-

<cd>

<title>Tupelo Honey</title>

<artist>Van Morrison</artist>

<country>UK</country>

<company>Polydor</company>

<price>8.20</price>

<year>1971</year>

</cd>

-

<cd>

<title>Soulsville</title>

<artist>Jorn Hoel</artist>

<country>Norway</country>

<company>WEA</company>

<price>7.90</price>

<year>1996</year>

</cd>

-

<cd>

<title>The very best of</title>

<artist>Cat Stevens</artist>

<country>UK</country>

<company>Island</company>

<price>8.90</price>

<year>1990</year>

</cd>

-

<cd>

<title>Stop</title>

<artist>Sam Brown</artist>

<country>UK</country>

<company>A and M</company>

<price>8.90</price>

<year>1988</year>

</cd>

-

<cd>

<title>Bridge of Spies</title>

<artist>T`Pau</artist>

<country>UK</country>

<company>Siren</company>

<price>7.90</price>

<year>1987</year>

</cd>

-

<cd>

<title>Private Dancer</title>

<artist>Tina Turner</artist>

<country>UK</country>

<company>Capitol</company>

<price>8.90</price>

<year>1983</year>

</cd>

-

<cd>

<title>Midt om natten</title>

<artist>Kim Larsen</artist>

<country>EU</country>

<company>Medley</company>

<price>7.80</price>

<year>1983</year>

</cd>

-

<cd>

<title>Pavarotti Gala Concert</title>

<artist>Luciano Pavarotti</artist>

<country>UK</country>

<company>DECCA</company>

<price>9.90</price>

<year>1991</year>

</cd>

-

<cd>

<title>The dock of the bay</title>

<artist>Otis Redding</artist>

<country>USA</country>

<company>Atlantic</company>

<price>7.90</price>

<year>1987</year>

</cd>

-

<cd>

<title>Picture book</title>

<artist>Simply Red</artist>

<country>EU</country>

<company>Elektra</company>

<price>7.20</price>

<year>1985</year>

</cd>

-

<cd>

<title>Red</title>

<artist>The Communards</artist>

<country>UK</country>

<company>London</company>

<price>7.80</price>

<year>1987</year>

</cd>

-

<cd>

<title>Unchain my heart</title>

<artist>Joe Cocker</artist>

<country>USA</country>

<company>EMI</company>

<price>8.20</price>

<year>1987</year>

</cd>

</catalog>
You may pull other tricks, such as “filter” the output, or select only nodes which meet certain conditions:

Filtering the Output

We can filter the output from an XML file by adding a criterion to the select attribute in the <xsl:for-each> element.

<xsl:for-each select="catalog/cd[artist='Bob Dylan']">
Legal filter operators are:

· = (equal)

· != (not equal)

· < less than

· > greater than

Take a look at the adjusted XSL style sheet:

	<?xml version="1.0" encoding="ISO-8859-1"?>

<xsl:stylesheet version="1.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:template match="/">

 <html>

 <body>

 <h2>My CD Collection</h2>

 <table border="1">

 <tr bgcolor="#9acd32">

 <th>Title</th>

 <th>Artist</th>

 </tr>

 <xsl:for-each select="catalog/cd[artist='Bob Dylan']">

 <tr>

 <td><xsl:value-of select="title"/></td>

 <td><xsl:value-of select="artist"/></td>

 </tr>

 </xsl:for-each>

 </table>

 </body>

 </html>

</xsl:template>

</xsl:stylesheet>

The Result

The result of the transformation will look like this:

My CD Collection

	Title
	Artist

	Empire Burlesque
	Bob Dylan

See http://www.w3schools.com/xsl/xsl_sort.asp for information about sorting and http://www.w3schools.com/xsl/xsl_if.asp about using if conditions, and http://www.w3schools.com/xsl/xsl_choose.asp about using choose/otherwise conditions.
