Ties to Java and Parsing
Abstract classes

An abstract class is a class which will never be instantiated directly, but is built solely for inheritance purposes.

For example, you might have an abstract class named equiPolygon which is used for polygons all of whose sides are the same length and all of whose interior angles are equal (e.g. equilateral triangles, squares, etc.). You can’t possibly get an instance of this class without specifying the number of sides and length of the side. You can, however, describe its behavior – e.g. it must have properties for sideLength, and numSides, and it must have methods area(), circumference() findInteriorAngle(), draw(). If pi were not a constant in your language then pi might be a (static) property of the class. (Recall static properties are the same for all objects in a class.)
You could then declare classes equiTriangle, square, etc as “extends equiPolygon”. You would, of course, have to provide code for area(). The draw() method is abstract because you can’t write the code until you know you know the number of sides –i.e. the subclass. A class with even one abstract method must be a abstract. (The mathematician in me point out that you can write code for circumference, as it just returns sideLength*numSides, and also for findInteriorAngle, which returns 2*pi/numSides. Then you could actually find the polygons area from that.)
Another example of an abstract class is pet. It might have a method speak() and properties such as speciesName, life, etc.

Abstract classes are defined with the Java keyword abstract.

Interfaces
An interface is like an abstract class without properties and no implementation for any of its methods. It contains a set of public methods (really just the prototype) which must be coded.

Although it is not done this way one could imagine a stack as being defined as an interface. Any stack must have three methods – testEmpty(), push() and pop(). If I were going to write code for a stack using an array for storage I would then define a new class stackByArray and say it “implements stack”. I would also add a properties for top and bottom.

Notice that all the methods in an interface are abstract. Also, in an interface none of the methods is coded. In an abstract class you may have some methods coded.

Of course, in our example above, this still does not specify what is in the stack. So you may mix interfaces and abstract classes to have a stackOfSquares which “implements stack extends equiPolygon”.
The purpose of an interface is to define the behavior of a class, and leave the implementation issues alone. This is exactly what our abstract notion of stack is. It has the 3 basic operations and may be implemented as a linked list, or in an array etc.

One could similarly imagine a printerInterface as an interface which (at least for Windows) must implement certain methods – print(), printPages(startPage, endPage), printLandscape(), etc. which take their parameters from the usual File -> Print menu. Again the advantages of a interface are clear – no matter who makes the printer, the drivers all interact with Windows in the same way. (This is purely a though experiment as Windows is not written in Java.)
Components

A component is a stand-alone reusable piece of software. At some level one could think of a library as component. Usually, however, when people talk about components they are also thinking about Java beans (also called EJB or Enterprise Java Beans.)

Beans (EJB)
Beans are Java classes with a set of public methods and following certain formats. For example, any property which the user needs to access must have a getProperty() and setProperty() method. A bean must also have a no parameter constructor.
In Java 1.4 (I believe) and later, there is something called introspection which allows a program to examine its own components. For example, many beans have a thisPropertyChangeEvent() – a method which generates an event whenever thisProperty is changed. These are called bound properties. Introspection allows a program to determine if a particular property in a bean is bound or not (i.e. will you get notified when the property changes.)
Many beans also have listeners which listen for a particular event to happen. (Was there input from the user? Did some other program send a message?)
Many swing and AWT components are beans.

Servlets

Servlets are applets which are on a server. Because you have no control of what version of Java is on the browser’s machine (or even if that machine has Java), it is often more convenient to have the applet on the server. One of the main uses of servlets is to generate Java Server Pages (JSP).
Java Server Pages (JSP)
These are the Java equivalent of the Perl scripts you wrote. They are in Java and they generate web pages (possibly from a database lookup or by just plain programming) to send back to a browser. Frequently the JSP themselves are put together by servlets.
SAX ,DOM and JDOM
SAX and DOM are language-neutral specifications (interfaces) which may then be implemented in any language. There are fairly common implementations in Java, Python, Perl, etc.
The particular implementation (the particualar SAX or DOM) you use will begin by defining aninstance of the parser, loading the document you wish to parse, and then starting to parse.
SAX (which stands for Simple API to XML) reads the .xml file and has event handlers which react to such things as start of docuent, end of doucment, start of element, end of element, attribute. When, for example, an element is found your program (written in your facorite language) will get a callback saying ‘hey I found an element and this is what its name is’ etc. Your program can then process that element. For example, if the xml document is a purchase order, your program might start assembling information to feed into your customer_orders system. (If that system is written in Java then your program might start to assemble a customer object, etc.) So, as it reads through the XML instance document, SAX sends information back to the program which called it, and that program then processes that information.

DOM (which is the Document Object Model) builds a complete tree of the document in memory and has interfaces which traverse (and even modify) the tree. You have already seen some of these when we worked with XHTML---- getElementByID(), createNode(), etc. DOM is very rich and very complex. In addition, for a large XML document, DOM will have to create a large tree.

“XML and Web Services Unleashed” puts it this way: SAX parses in time and DOM parses in space. DOM is definitely more complex, but it allows you to go forards, backwards, up and down the tree. SAX, on the other hand, is a one-pass parser.
I should mention that XMLSpy has a simplified DOM and 2 methods which go back and forth between their DOM and the full-fledged one.
JDOM is designed specifically to interface with Java programs. It is written in Java and (unlike DOM and SAX which are language-neutral) it uses classes, will generate objects from XML and will generate XML elements etc. from Java objects. It is designed to integrate with both a SAX (event-driven, on-pass) and DOM (tree model) approach.
