Web Services – Part 2
SOAP
There are 3 parts to the SOAP protocol:

· The SOAP Envelope Specification
Where to put the xmlns tags, the name of the method you are calling, the parameters you are sending the method, if a response is required, how error messages are specified, etc.
· Data Encoding Rules
What data types are supported- floats, etc. Also how to encode arrays, etc. No surprises.

· RPC Conventions (RPC = Remote Procedure Call)
More on conventions for one-message and two-message (response) interactions.
The SOAP Envelope has 2 parts – a Header and a Body. The entire SOAP message is wrapped inside an HTTP envelope and sent via HTTP.

For RPC, the SOAP Envelope has 2 parts:

· The opening tag will typically might name the various name spaces

· The Header is optional; it might contain password information, billing information etc. It is open and flexible. The mustUnderstand attribute (true or false, defaulting to false) can make the header mandatory.
· The body will name the method invoked and provide parameters
· The whole message looks like:

<?xml version =’1.0’ ?>
<SOAP-ENV:Envelope

 xmlns:SOAP-ENV=’http: //schemas.cmlsoap.org/soap/envelope/’

 xmlns:xs=’http://www.w3.org/2001/XMLSchema’

 Etc (see your text p.130) for more name spaces >

 <SOAP-ENV:Body>

 <xmlns:ns1 = ‘http:// name space for the service’>

 <ns1:name_of_service_method>

 < Whole XML element describing the parameters>

 :

 </whole XML element describing the parameters>

 </SOAP-ENV:Body>

 </SOAP-ENV:Envelope>

 Please notice that the Envelope tag (the SOAP-Env:Envelope tag) holds
 lots of namespaces.

 In a response SOAP message, the body will contain the result or error
message if the transaction was unsuccessful.

SOAP for one-way messages – see your text p. 115
Needless to say there are programmatic interfaces to encode and decode SOAP messages – in Java from Apache (http://xml.apache.org/soap/), GLUE from the Mind electric (http://www.themindelectric.com), and IBM WebSphere, in C#, C++ and Visual Basic from Microsoft and in Perl from SOAP::Lite (http://www.soaplite.com/) or CPAN (www.cpan.org) and in PHP from Zend (http://devzone.zend.com/node/view/id/689 where there are also some easy examples to get you started, if you know a little PHP) which also offers a NuSOAP toolkit (http://www.zend.com/zend/tut/tutorial-campbell.php?article=tutorial-campbell&kind=t&id=11785&open=1&anc=0&view=1#Heading4).

If you choose to work in Perl, I highly recommend the soaplite site and its cookbook (http://cookbook.soaplite.com/). Likewise for the PHP reference.
I also highly recommend the O’Reilly book ”Web Services Essentials” by Ethan Cerami.
www.xmethods.com has some public ally available web services you can play with – get weather, stock quotes, etc. You may need to click on the ‘full list’ for sports headlines and weather or go to http://www.xmethods.net/ve2/ViewListing.po?key=uuid:477CEED8-1EDD-89FA-1070-6C2DBE1685F8 to get the temperature method.

For any service listed at xmethods, you may click on the service for a description of it, and then click on its WSDL decryption. For example, http://www.xmethods.net/sd/2001/DemoTemperatureService.wsdl has the description for the Temperature
WSDL
A WSDL Specification has 6 parts

· definitions – the <definitions > element must be the root element. It names the web service and any other xmlns it will use. The other elements are its children!
· types – describes any data types being used. May be missing if the w3c schema types (the default) is all you need.

· message - a message is a one-way message or two-way (request - response); each message element has a name and optionally parameters

· portType – a portType element combines messages to put them into a complete transaction.

· binding – has specific information needed to implement the service – binding has a style attribute which is either ‘rpc or ‘document’; and a transport attribute which is normally set to a URI for http; it also has an operation child element for each operation which the service exposes.
· service – address to use to invoke the service; may also have port information.
 Let’s examine part of the Zend (PHP) tutorial at http://devzone.zend.com/node/view/id/689 (This is Example 3, a WSDL entry):

<?xml version ='1.0' encoding ='UTF-8' ?>
<definitions name='StockQuote'
 targetNamespace='http://example.org/StockQuote'
 xmlns:tns=' http://example.org/StockQuote ' Notice tns for this document
 xmlns:soap='http://schemas.xmlsoap.org/wsdl/soap/' Must have this group of 5 xmlns
 xmlns:xsd='http://www.w3.org/2001/XMLSchema'
 xmlns:soapenc='http://schemas.xmlsoap.org/soap/encoding/'
 xmlns:wsdl='http://schemas.xmlsoap.org/wsdl/'
 xmlns='http://schemas.xmlsoap.org/wsdl/'>

<message name='getQuoteRequest'>
 <part name='symbol' type='xsd:string'/> The parameter for the message
</message>
<message name='getQuoteResponse'>
 <part name='Result' type='xsd:float'/> The parameter for the message
</message>

<portType name='StockQuotePortType'>
 <operation name='getQuote'> This operation refers to the 2 messages defined just above
 <input message='tns:getQuoteRequest'/>
 <output message='tns:getQuoteResponse'/>
 </operation>
</portType>

<binding name='StockQuoteBinding' type='tns:StockQuotePortType'>
 <soap:binding style='rpc'
 transport='http://schemas.xmlsoap.org/soap/http'/> Standard http transport
 <operation name='getQuote'> Refers to our one and only operation in our portType
 <soap:operation soapAction='urn:xmethods-delayed-quotes#getQuote'/>
 <input>
 <soap:body use='encoded' namespace='urn:xmethods-delayed-quotes'
 encodingStyle='http://schemas.xmlsoap.org/soap/encoding/'/>
 </input>
 <output>
 <soap:body use='encoded' namespace='urn:xmethods-delayed-quotes'
 encodingStyle='http://schemas.xmlsoap.org/soap/encoding/'/>
 </output>
 </operation>
</binding>

<service name='StockQuoteService'> The service for our one and only binding
 <port name='StockQuotePort' binding='StockQuoteBinding'> Refers to the binding
 <soap:address location='http://[insert real path here]/server1.php'/>
 </port> Notice that line above gives actual URL for the service
</service>
</definitions>
Note: The WSDL caching feature is on by default. During the development of your WSDL file it should be turned off.

Looking back you can see that:

· The <definitions > element has all the namespace definitions

· The <message> elements each define one message – a request or a response

· A sequence of request-response are linked together in a <portType> element, which (obviously) refers to the messages by name and specifies which is the input message and which the output one.

· The <binding> element has <operation> children which specify the encoding and additional name space for the input and for the output. (Note the use of urn, or Uniform Resource Name.) The <operation> child of binding refers to the <operation> child of portType with the same name. So this links this particular part of binding with the portType operation. (A service may have multiple operations.)

· The <service> element has the actual URL where the service is. It has a <port> child whose binding attribute provides the link to the <binding> element.
‘
