Doing Linear Algebra in Sage              v2 1/30/08
NOTE: Once you have used Sage once thru the VMware Player, the next time you go back to the Vmware Player it will list Sage as a recent VM.

This lesson begins with using Sage in command line mode.  That is, you open up the VMware Player and once Sage is loaded you type sage at the login prompt.

NOTE: If odd things happen, you can press CTL-ALT to redirect input to your computer and then pull down the Vmware Player menu on the top edge of the Vmware Player window, and select Reset.

The following fields are available to you:  QQ (Rationals), RR (Real Numbers) and CC (Complex Numbers).  While others are also available, you will not need to know about them now.   All our work will be over RR.

If you want R to be the ring of polynomials in X over QQ you may define R in any one of the following equivalent ways according to the Tutorial (section 2.4):

sage: R = PolynomialRing(QQ, ’x’)

sage: R

           Univariate Polynomial Ring in x over Rational Field


           sage: S = QQ[’x’]

sage: S == R                     (==is the test for equality)

True

           sage: R.<x> = PolynomialRing(QQ)
           sage: R.<x> = QQ[’x’]

          sage: R.<x> = QQ[]

The definitions also define ‘x’ as the variable for your polynomials.

Here is my first exploration with sage’s work in blue and my entries in black:

sage: sage

sage: a=2

sage: a

2

sage: b=3

sage: b

3

sage: a/b

2/3

sage: print a/b

2/3

sage: c= 1+a/b

sage: c
5/3

sage: d=1.0+a/b

sage: d

1.666666666667

sage: print d
1.666666666667

Explanation:   

· Sage uses = for assigning values to variables.  Because Sage (like BASIC) is dynamically typed you do not need to specify what underlying type of variable you have.

· Sage does symbolic manipulations – which means it will carry variables such as x throughout as such and it also manipulates rationals as fractions without rounding.

· When you ask Sage to add a rational number and an integer (i.e. c=1+a/b) the result is a ration and you get the answer in rational form.

· When you ask Sage to add a real number and a rational (i.e. d=1.0+a/b) the result is a real number and it is displayed to 15 significant places (if I am counting the 6’s correctly.)  If you need more than that you can do double-precision arithmetic.


· More information on this may be found in Sage-for-newbies Section 3.14

· When you work in notebook mode, shift-enter will cause all your expressions to be evaluated.  When you work in command mode you may type the expression or type print followed by the expression.

· When you cause a bunch of expressions to be evaluated, only the last one will be displayed.  Use print if you want other one(s) to be displayed.  (Sage-for-newbies section 3.4.1)

· Actually you may use the print statement to format your results – e.g. ask for a certain number of digits.

Next we move to the discussion of linear algebra operations in Section 2.6 of the Tutorial.

Suppose we want to create the set of 3x3 matrices over Q.

The command is 

sage: M = MatrixSpace(QQ,3)
You could have gotten the same result by typing

sage: M = MatrixSpace(QQ,3,3)
and, as you can guess, MatrixSpace(QQ,3,2) will give you 3x2 matrices (3 rows and 2 columns).
You are not limited to matrices with entries in QQ…. RR or CC works as expected.

Sage also has a matrix(  ) function for creating matrices and has corresponding vector(  ) function and VectorSpace(QQ, 7) objects.  (Reference Manual Chapter 31).
Once we have created the space M we may enter a matrix in it.  For example, (see Constructions Chapter 5 at  http://sagemath.org/doc/html/const/index.html) we enter
sage:  A=M([1, 2, 3, 4, 5, 6, 7, 8, 9])               

           NOTE the format: A = M( enter inside square brackets)

                      You need both the parentheses and square brackets.

If you now ask Sage for A, you will have the following:

sage: A

[1  2  3]

[4  5  6]

[7  8  9]

It is also possible to get this matrix A specifying the matrix space ‘on the fly’ or anonymously:
Matrix arithmetic and basic manipulations:  
If you have defined two matrices A and B then 2*A multiplies A by 2, A+B is the matrix sum, A*B is the matrix product and A^3 will give you A*A*A.  
Sage comes with the many built-in functions or methods.  

NOTE: When you are using a function named trace() or something else you must have the parentheses at the end.  Also note that there is a period between the name of the matrix (A in this example) and the name of the function.
When you look at the code for Sage you will see code like:

          B=A.inverse(); B

The first part of this finds the inverse for A and assigns it to B.  The semicolon separates the two statements.  The second statement (B) asks for B to be displayed.

Some of the most basic functions are:
A.trace()

A.determinant()  

          (There are other functions which use different algorithms for this 
          computation.)
A.transpose()

Kernels, nullity, dimension, etc.
A.kernel() will give you the dimension and the basis for the kernel of multiplying by A.

A.nullity()

A.row_span()

A.inverse() 

     NOTE: You may also get this as A^(-1)

A.gramm_schmidt()

OF COURSE, if you want to save the results of any of these functions you should assign them to a new variable….e.g.

d=A.determinant ()

A space (or subspace) also has a dimension() method.

A.minors(k)  which gives the minors of A when you delete enough rows and columns to get down to k x k minors.  They are in lexicographic order.

There are also functions row_swap(), matrix_from_rows() and matrix_from_columns().  (See section 5.1 of Constructions and Command line Help section of Constructions at http://sage.math.washington.edu/sage/doc/html/const/node92.html)
Row reducing, inverses and solving systems of equations

If you have defined sage: A = matrix(QQ, 3, [1,2,3,4,5,6,7,8,9]
we can ask Sage to give us the reduced row echelon form of A.  

NOTE: You are using a function named echelon_form() and you must have the parentheses at the end.  Also note that there is a period between the name of the matrix (A in this example) and the name of the function.
sage: A.echelon_form()
[1   0  -1]

[0   1   2]

[0   0   0]

The method A.echelonize() will replace A by its row-echelon form.

The method A.echelon_classical() returns the eceholon form of A and 
A.echelon_in_place_classical() replaces A by its echelon form.
If you wish to solve a system of equations Ax=b, where the matrix A and the vector b have been defined, you may do it in any one of the following ways:

            X = A.solve_right(b)

            X = A\b

Here is what Sage’s matrix.py file says about solving equations, and an explanation:

def _backslash_(self, B):

        """

        Used to compute $A \\ B$, i.e., the backslash solver operator.

        EXAMPLES:

            sage: A = matrix(QQ, 3, [1,2,4,2,3,1,0,1,2])

            sage: B = matrix(QQ, 3, 2, [1,7,5, 2,1,3])

            sage: C = A._backslash_(B); C

            [  -1    1]

            [13/5 -3/5]

            [-4/5  9/5]

            sage: A*C == B

            True

            sage: A._backslash_(B) == A \ B

            True

            sage: A._backslash_(B) == A.solve_right(B)

            True        

        """

        return self.solve_right(B)

First the matrix A is defined as a 3x3 matrix over the rationals.
(1 2  4)

(2 3  1)

(0 1  2)


Notice that if you give only one dimension for the matrix size, Sage assumes it is a square matrix.  Notice also that the definition of A is embedded in the statement which specifies it as a 3x3 matrix.

Next B is defined as a 3x2 (3 rows, 2 columns) matrix over the rationals.  B is

(1 7)

(5 2)

(1   3)

We can solve two systems of equations at once:

        A x = first column of B

        A y = second column of B

X gives the first column of C and y gives the second column of C.
You can verify that Ax =  (1  2  4)   (   -1 )  =  (1)

                                         (2  3  1)  (13/5)     (5)

                                         (0  1  2)  ( -4/5)     (1)
and the right hand side is the first column of B.  Ditto for Ay being the second column of B.
To repeat, there are 3 easy ways to solve AX=b:
X= A \ b

X= A._blackslash_(b)
X=A. solve_right(b)

For MATLAB/Octave users, this is the backslash operator in that platform.

Sage also has a method to augment matrices: 

            A.augment(C)

For example, if A is a 3x3 matrix and I3 is the 3x3 identity matrix you might write


B=A.augment(I3)

           C=B.echelon_form()

This will give you an augmented matrix ( I3 | A-1 ) 

Not surprisingly, you may also partition a matrix.  Here is Sage’s example (The first line is just to generate some entries):

EXAMPLE: 

            sage: M = matrix(3, 4, range(12))

            sage: M.subdivide(1,2); M

            [ 0  1| 2  3]

            [-----+-----]

            [ 4  5| 6  7]

            [ 8  9|10 11]

            sage: M.subdivision(0,0)

            [0 1]

            sage: M.subdivision(0,1)

            [2 3]

            sage: M.subdivision(1,0)

            [4 5]

            [8 9]

Eigenvalues and vectors and characteristic polynomials
A.charpoly()

       Sage’s documentation in matrix.py says:

        EXAMPLES:

            sage: a = matrix(QQ, 2,2, [1,2,3,4]); a

            [1 2]

            [3 4]

            sage: a.characteristic_polynomial('T')

            T^2 - 5*T - 2

        Notice that you may specify what to use as your indeterminant (here ‘T’). 
A.fcp() will find the characteristic polynomial of A and factor it.  The determinant will be ‘x’ unless you specify otherwise – e.g. A.fcp(‘z’)  

A.eigenvectors(), 

A.eigenspaces()  returns the eigenvalues, each of which is followed by a basis for the eigenvectors for that eigenvalues. .
NOTE: You should be sure that the base field for your matrices includes your eigenvalues.  For example, RR rather than QQ should be used in order to get the square root of 2.
When we get to eigenvalues and eigenvectors the following will be explained:

def eigenspaces(self, var='a'):

        r"""

        Return a list of pairs

             (e, V)

        where e runs through all eigenvalues (up to Galois conjugation)

        of this matrix, and V is the corresponding eigenspace.

        The eigenspaces are returned sorted by the corresponding characteristic

        polynomials, where polynomials are sorted in dictionary order starting

        with constant terms. 

        INPUT:

            var -- variable name used to represent elements of

                   the root field of each irreducible factor of

                   the characteristic polynomial

                   I.e., if var='a', then the root fields

                   will be in terms of a0, a1, a2, ..., ak.

        WARNING: Uses a somewhat naive algorithm (simply factors the

        characteristic polynomial and computes kernels directly over

        the extension field).  TODO: Maybe implement the better

        algorithm that is in dual_eigenvector in sage/modular/hecke/module.py.

        EXAMPLES:

        We compute the eigenspaces of the matrix of the Hecke operator

        $T_2$ on level 43 modular symbols. 

            sage: # A = ModularSymbols(43).T(2).matrix()

            sage: A = matrix(QQ, 7, [3, 0, 0, 0, 0, 0, -1, 0, -2, 1, 0, 0, 0, 0, 0, -1, 1, 1, 0, -1, 0, 0, -1, 0, -1, 2, -1, 1, 0, -1, 0, 1, 1, -1, 1, 0, 0, -2, 0, 2, -2, 1, 0, 0, -1, 0, 1, 0, -1]); A

            [ 3  0  0  0  0  0 -1]

            [ 0 -2  1  0  0  0  0]

            [ 0 -1  1  1  0 -1  0]

            [ 0 -1  0 -1  2 -1  1]

            [ 0 -1  0  1  1 -1  1]

            [ 0  0 -2  0  2 -2  1]

            [ 0  0 -1  0  1  0 -1]

            sage: f = A.charpoly(); f

            x^7 + x^6 - 12*x^5 - 16*x^4 + 36*x^3 + 52*x^2 - 32*x - 48

            sage: factor(f)

            (x - 3) * (x + 2)^2 * (x^2 - 2)^2

            sage: A.eigenspaces()

            [

            (3, [

            (1, 0, 1/7, 0, -1/7, 0, -2/7)

            ]),

            (-2, [

            (0, 1, 0, 1, -1, 1, -1),

            (0, 0, 1, 0, -1, 2, -1)

            ]),

            (a2, [

            (0, 1, 0, -1, -a2 - 1, 1, -1),

            (0, 0, 1, 0, -1, 0, -a2 + 1)

            ])

            ]            

IF YOU WANT THE CODE FOR THE MATRIX MODULE

· Login at sagenb.com

· Start a new worksheet

· In an empty cell type

        search_src(“matrix.py”)   and shift+enter

I get the URL https://www.sagenb.org/src/matrix/matrix2.pyx/
· Since this is a large file you will probably need to ^f to find your term.

· The file has many useful examples and also is clear about what algorithm is used for various methods.

· Documentation may be found (theoretically) by typing (in an empty cell)

        search_doc(“matrix.py”)   and shift+enter

This, however, provides a search of the reference manual and is not always very helpful----for example it does not have a list of all matrix methods.

· As all method definitions begin with def it time hangs heavy on your hands you can get a hold of matrix.py with the search_src function as above and then ^f your way down thru all the def’s.

