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Background: Genotype · environment interaction (G · E) arises when genes influence sensitivity to
the environment. G · E is easily recognized in experimental organisms that permit randomization of
genotypes over fixed environmental treatments. Genotype–environment correlation (rGE) arises when
genetic effects create or evoke exposure to environmental differences. Simultaneous analysis of G · E
and such �active� or �evocative� rGE in humans is intractable with linear structural models widely used in
behavioral genetics because environments are random effects often correlated with genotype. The
causes of the environmental variation, therefore, need to be modeled at the same time as the primary
outcome. Methods: A Markov Chain Monte Carlo approach is used to resolve three distinct pathways
involving genes and life events affecting the development of post-pubertal depression in female twins
and its relationship to pre-pubertal anxiety: 1) the main of genes and environment; 2) the interaction of
genes and environment (G · E); and 3) genotype–environment correlation (rGE). Results: A model
including G · E and rGE in addition to the main effects of genes and environment yields significant
estimates of the parameters reflecting G · E and rGE. Omission of either G · E or rGE leads to over-
estimation of the effects of the measured environment and the unique random environment within
families. Conclusions: 1) Genetic differences in anxiety create later genetic differences in depression;
2) genes that affect early anxiety increase sensitivity (G · E) to adverse life events; 3) genes that increase
risk to early anxiety increase exposure to depressogenic environmental influences (rGE). Additional
genetic effects, specific to depression, further increase sensitivity to adversity. Failure to take into
account the effects of G · E and rGE will lead to misunderstanding how genes and environment affect
complex behavior. Keywords: Anxiety, depression, life events, genotype · environment interaction,
genotype, environment correlation, adolescence, development, Bayesian, Markov Chain Monte Carlo,
twins. Abbreviations: G · E: Genotype · environment interaction; rGE: Genotype–environment cor-
relation; MZ: monozygotic; DZ: dizygotic; MCMC: Markov Chain Monte Carlo.

The paths from DNA to psychopathology are long
and tortuous. Almost certainly, they involve the ac-
tion, interaction and correlation of many genes and
environmental factors whose effects change and/or
accumulate through development as a result of
endogenous mechanisms and the interplay between
the person and the environment. In this paper we try
to bring together in a single model three separate
strands of previous genetic analysis of adolescent
depression that, until now, have only been consid-
ered in isolation: interaction between genes and life
events in the etiology of depression; genetic influen-
ces on life events; and heterotypic (genetic) con-
tinuity/comorbidity between early anxiety and later
depression. To accomplish this goal, we combine
longitudinal, genetically informative data from the
Virginia Twin Study for Adolescent Behavioral
Development (VTSABD) within a Bayesian frame-
work for statistical analysis that supersedes many
earlier methods for the facility with which it can
handle problems in non-linear genetic modeling.

There are several different ways in which genes
may affect a psychiatric disorder (Kendler & Eaves,
1986; Rutter & Silberg, 2001). Some genes may af-
fect overall liability to disorder (�main effect� of
genes). Other genes may affect liability by influen-

cing sensitivity of the individual to environmental
factors (�genotype · environment interaction�, G · E)
creating genetic variation in the regression of phe-
notype on environment. Still other genes may affect
the probability of exposure to environmental risk
factors (�genotype–environment correlation�, rGE).
The classical example of rGE in experimental gen-
etics arises when the offspring phenotype is affected
by the maternal genotype. In humans, especially, we
recognize also that individuals may create, select or
elicit environments that are correlated with their
genotype (�active� or �evocative� rGE; Plomin, Lich-
tenstein, Pedersen, McClearn, & Nesselroade, 1990;
Kendler, Neale, Kessler, Heath, & Eaves, 1993).

Different genes may affect the phenotype through
two or three of these pathways simultaneously.
Thus, genes that affect overall liability may also in-
crease sensitivity to the environment and influence
exposure to the environment (Mather & Jinks, 1982;
Jinks & Fulker, 1970). In addition, the expression of
genetic and environmental effects may change dur-
ing development (Eaves, Long, & Heath, 1986) lead-
ing to different genes affecting the same phenotype at
different ages and/or the same genes having differ-
ent phenotypic expression at different ages (�hetero-
typic continuity�).
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Genotype · environment interaction (G · E) is a
widespread property of genetic systems (Mather &
Jinks, 1982) that arises when sensitivity of the
phenotype to environmental influences is partly un-
der genetic control. Sensitivity to the environment
may be mediated by different genes from those con-
tributing to the main effects of genetic differences
(Caligari & Mather, 1975) and different genes may
control sensitivity to different measured aspects of
the environment (Mather, 1975).

The significance of G · E and rGE for human be-
havioral differences and disorders has been widely
acknowledged (Cattell, 1965; Jinks & Fulker, 1970;
Eaves, Last, Martin, & Jinks, 1977; Scarr &
McCartney, 1983), but clear examples of G · E in
humans are few (Kendler & Eaves, 1986).

In experimental organisms, it is possible to ran-
domize sets of genotypes over the range of relevant
environments so any differences between genetic
architecture (e.g., amount of genetic variance) in
different environments indicate the presence of
G · E interaction. In humans, it is common practice
to detect G · E in an analogous way by stratifying
genetically informative individuals (e.g., twin pairs)
by hypothesized environmental factors and to com-
pare the contributions of genetic effects between
strata. However, this approach assumes that the
genes affecting the measured trait do not also affect
exposure to the salient environment. If there is rGE,
stratification by an environmental variable will result
in differences between allele frequencies in the dif-
ferent strata and thus produce spurious indication
of G · E interaction.

Recognizing this problem has resulted in invest-
igators restricting their analyses of G · E to envir-
onments that can be shown to be independent of
genotype (i.e., for which there is no detectable rGE).
This is the approach used by Heath, Eaves, and
Martin (1998) in the detection of interaction between
genetic risk to depression and marital status, Silberg
et al. (2001) to examine the interaction of life events
and genetic risk to adolescent depression, and Caspi
et al. (2002) in testing for interaction between allelic
differences at the MAO locus and early abuse in risk
for conduct disorder. Thus, the analysis of G · E has
typically required the absence of rGE. At the same
time, many studies claim to have demonstrated
genetic effects on exposure to specific environments,
notably life events (e.g., Kendler et al., 1993; Silberg
et al., 1999). Typically, these studies ignore the
effects of G · E interaction.

Correlation between genetic and environmental
effects presents a hitherto unresolved complication
to the analysis of G · E in humans that is not
experienced in the study of experimental organisms.
For example, stratification by fixed values of an
environmental covariate (Neale & Cardon, 1992)
does not deal with the interaction and correlations
between random variables needed to characterize
G · E in humans. The fact that the environment is

often a random variable requires that the analysis of
G · E models both the genetic and environmental
basis of environment and the outcome at the same
time. This has typically not been the case.

In reality, we anticipate that all three mechanisms
– main effects of genes and environment, G · E and
rGE – will contribute to the development of complex
behavioral outcomes. Failure to provide an approach
to the genetic analysis of behavior that integrates the
three sources of genetic difference in the same model
is a barrier to a comprehensive model for the roles of
genes and environment in human behavior and risk
for psychiatric disorders. The dilemma is simple:
current methods detect G · E by assuming there is
no rGE, but demonstrate repeatedly that many of the
most salient environmental factors are correlated
with genetic difference (i.e., that there is consider-
able rGE).

The empirical groundwork for our attempt to
integrate these three mechanisms for the action of
genes in the development of depression is laid in
three earlier papers by Silberg et al. (1999, 2001,
2001a). Silberg, Rutter, and Eaves (2001) showed
how the main effect of genetic differences in anxiety
before age 14 accounted for most of the genetic dif-
ferences in post-pubertal depression, thus revealing
an underlying genetic basis to heterotypic continuity
of anxiety and depression. Silberg, Neale, Rutter,
and Eaves (2001) showed how the genetic variance
in post-pubertal depression increased as a function
of increasing environmental stress (genotype ·
environment interaction), using life events selected
to be independent of genetic differences, notwith-
standing the fact that the genes influencing
depression are also implicated in exposure to
dependent life events (Silberg et al., 1999, genotype–
environment correlation). However, in spite of
repeated demonstrations that genetic differences
may explain part of the variance in life events, no
method has been devised to integrate G · E and rGE
in a single analysis. The fact that these papers ini-
tially treated the three mechanisms separately is a
reflection of the lack of a general framework for their
integration.

Our report remedies this deficiency with an ap-
proach that we anticipate will have wider applica-
tion. We show how a Markov Chain Monte Carlo
(MCMC) approach (Gilks, Richardson, & Spie-
gelhalter, 1996; Hastings, 1970; Zeger & Karim,
1991) can resolve the random main effects and in-
teractions of genes and correlated measured life
events in the etiology of depression in post-pubertal
twin girls.

Materials and methods

Sample and measures

The data comprise assessments of pre-pubertal anxiety
and post-pubertal depression and life events in a
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sample of adolescent female twin pairs (N ¼ 467 MZ,
220 DZ pairs) from the longitudinal Virginia Twin Study
of Adolescent Behavioral Development (Meyer, Silberg,
Simonoff, Kendler, & Hewitt, 1996; Hewitt et al., 1997;
Eaves et al., 1997; Simonoff et al., 1997). DSM-IIIR
symptoms of overanxious disorder and depressive dis-
order were assessed by face-to-face semi-structured
psychiatric interview with each child using the Child
and Adolescent Psychiatric Assessment (C-CAPA; An-
gold et al., 1995). Anxiety and depression were both
summarized by total count of DSM-IIIR symptoms
attributed in the three months prior to interview. Life
events in the year prior to interview were assessed by
self-report questionnaire completed by twins� mothers
(Johnson, 1986) about each of the twins at the time of
home visit. Life events associated with post-pubertal
depression were selected by preliminary statistical
screening using a data mining approach (�MARS�;
Friedman, 1991) that employs cross-validation tech-
niques to minimize the chance of false positive conclu-
sions when reviewing large numbers of covariates.
Events were selected only for their association with
depression and not for independence from genetic
influences. The events selected were aggregated into the
�life events score� used in this study: parent becoming
less interested or less loving with her; serious illness or
injury to herself; breaking up with someone she had
been dating regularly; miscarriage or abortion; making
failing grades on a report card; parents divorced or
separated; death of a close friend; entry into the home of
a new partner for mother or father; parent getting into
trouble with the law; brother or sister (or stepbrother/
stepsister) leaving home.

Model for G · E and rGE

We consider the joint distribution of three random vari-
ables in pairs of twins: post-pubertal depressive symp-
toms,D ; adverse life events,E, andpre-pubertal anxiety,
A. We letDij,Aij and Eij be themeasures for the j th twin of
the ith pair respectively. Ourmodel for depression allows
for the main effects of life events, the main effects of
genes and the interaction of genes and life events that
may correlate with genotype. The model is summarized
graphically in Figure 1. Genetic effects are divided into
those shared with earlier anxiety and those having
effects specific to later depression. Both may interact
with life events to modulate the risk for depression.

Some basic features of the model may be inferred
from the summary statistics provided in Table 1.

Consider early anxiety first. Symptoms of pre-
pubertal anxiety, A, show a small genetic effect since
the DZ correlation is significantly less than the MZ
correlation (Table 1). In our model, anxiety is an index
primarily of early genetic differences that may influence
later depression in several ways. For the anxiety score
of the jth twin of the ith DZ pair we write:

ADZij ¼ la þ 9a
Æ
gai;j þ si;j: ð1Þ

The mean pre-pubertal anxiety is la. The within-family
environmental deviation of the jth twin of the ith pair is
si,j (N[0,U

2
a ]). Genetic effects on pre-pubertal anxiety,

gai,j, may affect depression in three ways: through their
main effect on depression and their impact on sensi-
tivity to life events (G · E) as specified in equation 3
below and through their impact on exposure to life

Unique

Env,t

Life
Events

[E]

Shared
Env,t

Genes
[gd]

N[0,1]bd

bed
bae

bad

ba

N[0,σa
2]

N[0,σe
2]

N[0,1]

Unique

Env,t

Genes
[ga]

N[0,1]

Unique

Env,t
Anxiety

[A]

Depression

[D]

X

N[0,σd
2]

Ya
Yd

Figure 1 Principal features of model for main effects of genes (G) and life events (E), G · E interaction and genotype–
environment correlation on post-pubertal depression in girls. Note: parameter names correspond to those used in
text. denotes G · E interaction pathway. Measured variables (D, E, A) represented by squares, latent variables by
circles. Means of measured variables are not included in the figure

1008 Lindon Eaves, Judy Silberg, and Alaattin Erkanli



events (G–E correlation) through equation 2. There are
numerous ways of parameterizing the model in (1) and
subsequent equations. We assume that gai,j is N[0,1]
and the coefficient 9a

Æ
is the path from genotype to

anxiety phenotype. The same equation may be used for
MZ pairs, recognizing that the twin covariance for gen-
etic effects is greater than that for DZs. In our applica-
tion we assume that all the main effects of genes are
additive: i.e., that the expected covariance of genetic
effects in MZs is exactly twice that in DZs (Eaves, 1982).

The model for twin resemblance in life events is also
simple. The DZ correlation for the life events scale is
large and greater than half the MZ correlation consis-
tent (see Table 1) with substantial shared environmen-
tal effects on life events (Eaves, 1982). However, the MZ
correlation is still greater, implying that genetic factors
influence exposure to life events (genotype–environment
correlation). We postulate that the salient environments
are influenced by genes that exercise a common effect
on anxiety and depression (gai,j see eq. 1). Thus, the
life events score of the jth twin of the ith pair may be
represented by:

Ei;j ¼ le þ 9e
Æ
ci þ 9ae

Æ
gai;j þ ei;j; ð2Þ

where le is the mean life events score, ci (N[0,1]) is the
deviation of the shared family environment of the ith
family from the population mean and eij (N[0, U2

e ]) is the
(environmental) deviation of the jth twin of the ith pair.
The coefficient 9ae

Æ
is the path from genes that influence

anxiety, ga, to life events. It will be zero if there is no
genotype–environment correlation for life events. The
path 9e

Æ
reflects the contribution of the shared environ-

ment, c, to life events.
For depression the model is more complex, allowing

for the main effects of genes and life events on depres-
sion and G · E interaction. The main effects of genes
and their effects in G · E may be divided into two kinds:
those genes whose effects are specific to depression and
those genes whose effects also influence earlier anxiety.
Thus, for DZ twins we write:

DDZij ¼ ld þ 9d
Æ
gdi;j þ 9ad

Æ
gai;j þ 9ed

Æ
Ei;j

þ cdgdi;jEi;j þ cagai;jEi;jdi;j:
ð3Þ

The mean is ld. gd comprise the genetic effects (N[0,1])
specific to depression and uncorrelated with those

affecting A. Coefficient 9d
Æ

assesses the direct impact of
these genes on depression. Coefficient 9ad

Æ
measures the

impact on depression of genes with primary effects, ga,
(N[0,1]) on A. The main effect of life events on depres-
sion is reflected in 9ed

Æ
. Measurement errors and random

environmental differences within families are sub-
sumed in the error terms di,j, (N[0, U2

d]). Multiplicative
G · E interaction is represented by the coefficients cd
and ca reflecting respectively the varying sensitivity to
the environment arising from genes that primarily affect
D only (gd) and differences in sensitivity caused by
genes (ga) primarily affecting A. In the absence of G · E
both coefficients are zero. A similar expression may be
written for MZ twins. The model (3) may be elaborated
or simplified in a number of ways. Our model is dictated
partly by effects that reflect the pattern of MZ and DZ
correlations for the three variables.

Statistical method

Models involving G · E are non-linear but the prevailing
software for the statistical genetic analysis of family
data relies on the mathematical simplifications of the
linear model.

The dominant statistical paradigm, in the analysis of
twin data, consists of maximizing the likelihood of the
observed data as a function of unobserved, latent, vari-
ables that are assumed to reflect the individual genetic
and environment effects of family members (e.g., Martin
& Eaves, 1977; Neale & Cardon, 1992).

Thus, if we denote the phenotypes of a pair of twins
by T1 and T2 respectively, we may compute the like-
lihood of the pair for any latent genetic and environ-
mental effects of the twins, (g1,g2,e1,e2). We may denote
this likelihood by l[T1,T2|(g1,g2,e1,e2)].

In the typical genetic model, the latent variables,
g1…e2, are unknown. If, however, the distribution of the
latent variables is known, for example if they are mul-
tivariate normal, the likelihood is the integral over all
possible values of g1…e2 of the likelihoods weighted
by the probability of occurrence of each set of latent
values, i.e., we evaluate the integral of

L½T1; T2jðg1; g2; e1; e2Þ�W ðg1; g2; e1; e2Þ

over all possible values of the four latent variables,
g1,g2,e1,e2.

In the most commonly considered case, in which the
phenotypes T1 and T2 are linear functions of g1…e2 and
the distribution of the latent variables is multivariate
normal, the integral has an explicit �one line� algebraic
solution (see, e.g., Neale & Cardon, 1992) that can be
evaluated in terms of the phenotypic values and the
means and covariance structure of the latent variables.
This means that the computational demands of max-
imizing the likelihood with respect to the parameters of
a linear model for the phenotype, though still not trivial,
are relatively manageable and have been implemented
in a number of user-friendly packages for linear struc-
tural modeling such as Mx (Neale, Boker, Xie, & Maes,
1999).

In general, there may be no exact algebraic solution
to this integral, so it may be necessary to approximate it
by choosing a number of sets of values for the latent
variables and add them with appropriate weights. A
variety of different algorithms have been evolved to

Table 1 Correlations for longitudinal data on anxiety,
depression and life events in adolescent twin girls

Variables Correlation N (pairs)

Anxiety–Depression .177 398
Anxiety–Life events .109 405
Depression–Life events .222 702
MZ Depression .243 243
MZ Anxiety .243 333
MZ Life Events .699 263
DZ Depression .002 95
DZ Anxiety .126 163
DZ Life Events .552 99

Note: Anxiety is assessed before puberty. Depression and Life
events are assessed after puberty. The MCMC analysis auto-
matically imputes missing values so incomplete response
vectors are incorporated in the analysis.
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guide the selection of values for the latent variables and
appropriate weights. The numerical approximation,
however, becomes very computer intensive as the
number of latent variables (dimensions) increases
since, if p points are required to approximate a given
integral in one dimension, we will typically need pk to
approximate the integral in k dimensions. If p ¼ 10 and
k ¼ 4 that means that 10,000 evaluations of the likeli-
hood conditional on values of g1…e2 are required to
approximate the integral for a single pair of twins. This
is not impossible, but is potentially very tedious in the
most general case, since many evaluations of the overall
likelihood will be required to estimate the parameters of
the distribution W(g1,g2,e1,e2).

In the restricted case in which the environment is
measured exactly and independent of genotype, condi-
tioning the expected covariances between relatives on
the environmental measures allows for the effects of
G · E to be captured by the linear model, with each
family (e.g., twin pair) being sampled from a population
with covariance matrix conditional on the environ-
mental values. The test for G · E amounts to a test for
the heterogeneity of genetic components over environ-
mental strata. However, this approach will not work in
general, because the measures of the environment may
be correlated with genotype or themselves only indices
of a latent random variable whose effects are assessed
more or less unreliably. Under these circumstances,
although the likelihood can easily be written, the
integral does not reduce to the same simple form that
applies under the linear model.

These facts alone place a premium on methods of
model-fitting that do not require tedious coding or large
numbers of function evaluations for successful
parameter estimation. If there were no other theoretical
advantage, the practical benefits alone might justify our
considering the alternative Markov Chain Monte Carlo
approach (MCMC) to model-fitting. More details of the
approach and some applications to non-linear genetic
models are given by Eaves and Erkanli (in press).

At one level, we may regard MCMC as an alternative
approach to the use of Monte Carlo methods of numer-
ical integration to evaluate likelihoods of observations.
However, the resemblance is superficial. MCMC is typ-
ically embedded in a Bayesian approach to modeling.
ML seeks the parameter values, P, that maximize the
likelihood of the data, D, given the parameters: i.e.,
L(D|P). The Bayesian approach seeks the posterior
distribution of the parameters Q, conditional on the
data, i.e., H(Q|D). In the Bayesian approach, the indi-
vidual values of the latent variables and the means and
components of covariance and/or regression coeffi-
cients are all parameters in the model. Starting with an
assumed prior distribution of the parameters in Q
(which may assume very little apart from the form of the
distribution), MCMC simulates a chain of parameter
values (including values of individual latent variables)
such that, under certain conditions, the distribution of
successive sets of simulated values converges to the
required distribution of the desired parameters. Statis-
tics derived from many repeated samples for the pos-
terior distribution can be used to yield estimates of the
parameter means, variances, quantiles etc.

Many methods have been devised for simulating such
a chain of values. However, one very flexible approach is

the Gibbs sampler (Gilks et al., 1996). This is the ap-
proach to MCMC modeling implemented in the package
WinBUGS by the MRC BUGS project in Cambridge,
England (Spiegelhalter, Thomas, & Best, 2000). Al-
though implementation of models such as ours require
some programming, for the most part it is no more
daunting than writing code in Mx or S-Plus, and far less
inhibiting that writing FORTRAN code even with the
assistance of good software for numerical integration,
differentiation and non-linear optimization. The bene-
fits of the approach lie in our ability to specify non-
linear models such as ours and to obtain estimates of
individual values on latent variables and the sampling
distributions of model parameters. Gilks et al. (1996)
provide a basic introduction to MCMC methods and
many examples of their application. Eaves and Erkanli
(in press) provide examples of WinBUGS code for some
non-linear models for twin data.

In ML, one function evaluation may be thought of
as the computation of the likelihood over a large
number values of the latent variables chosen for
numerical reasons at a given set of values for the
model parameters. In MCMC, an iteration is the
computation of the likelihood at a set of latent trait
and model parameter values simulated from the cur-
rent posterior distribution of all the parameters,
including the trait values.

Although the method is computer-intensive, it has
many advantages over approaches that rely on numer-
ical maximization of the likelihood, especially for non-
linear latent variable models. Side-benefits of the
MCMC approach are simultaneous estimates of func-
tions of the unknown parameters (means, standard
deviations, percentiles, etc.) and automatic imputation
of missing and latent variables (Gilks et al., 1996). We
assumed that the distribution of all unknown constants
is multivariate normal, and that variance components
each followed the gamma distribution. WinBUGs was
used to generate a chain of 35,000 updates of the Gibbs
sampler under the full model allowing for the main ef-
fects and interactions of the random genetic and envir-
onmental factors underlying D, A and E. We assumed
an uninformative prior distribution of the coefficients
and variance components. The first 25,000 samples
were discarded for �burn in� and the next 10,000 used to
characterize the distribution of the model parameters
conditional upon the data. Several reduced models may
also be fitted. We focus on two as critical for the inter-
pretation of our data and previous findings. The first
reduced model omitted the parameters relating to G · E
interaction, thus specifying a classical linear model for
the main effects of genes and environment on the three
measures. The second reduced model also omitted the
path from genetic effects on anxiety to life events
(genotype–environment correlation). For these models,
we sampled 10,000 MCMC updates after a 15,000 cycle
burn-in.

Results

Parameter estimates under the full model

Table 2 summarizes the distribution of the means,
path coefficients and residual components of
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variance of the full model including rGE and G · E.
The empirical upper and lower 2.5% confidence
intervals show that most of the components in the
model are statistically significant, many highly so.
The coefficients testing for G · E are both significant,
showing that genetic effects on anxiety also increase
sensitivity to environmental adversity. Of no less
importance is the highly significant contribution to
G · E from genes that have effects only on depres-
sion. Previous analyses of the genetic relationship
between anxiety and depression that have not
included G · E have not found substantial genetic
effects on depression that do not also affect anxiety
(Kendler, Heath, Martin, & Eaves, 1986; Kendler,
Neale, Kessler, Heath, & Eaves, 1992). The genetic
correlation between juvenile anxiety and depression
is also large, but there is some evidence of genetic
effects specific to depression (Thapar & McGuffin,
1997). One possible explanation of the lower genetic
correlation in juveniles could be the non-linearity of
the genetic relationship between anxiety and

depression resulting from G · E interaction. We find
a highly significant path (.3274) from genetic effects
on anxiety to exposure to adverse life events (rGE),
although the direct main effect of life events on
depression (.1278) is relatively small and barely
significant. The model thus implies that the major
impact of life events on depression arises in those
individuals who are especially vulnerable genetically
to environmental adversity.

Estimates under reduced models

What happens if we ignore the effects of G · E?
Results for two reduced models are summarized in
Table 3. The likelihood deteriorates substantially
when G · E is removed from the model and is still
worse when genotype–environment correlation is
also deleted. The fact that MCMC simulates large
numbers of individual latent trait values means that
there is no exact number of df available for likelihood
ratio tests. The small standard errors attached to

Table 3 MCMC estimates (10,000 updates after 55,000 iteration �burn in�) and summary statistics for two reduced models for
post-pubertal depression in girl twins

Omitting G · E Omitting G · E and rGE

Parameter Reduced Model Description Mean SD Mean SD

9d
Æ

Genetic, specific to depression .2589 .1338 .2378 .1252
9a
Æ

Genetic, anxiety (may also affect depression) .3457 .0365 .3288 .0378
9ad
Æ

Genetic, from �anxiety genes� to depression .2585 .0753 .2727 .0643
9ed
Æ

Life events to depression .1205 .0578 .2171 .0393
9c
Æ

Shared environment, life events .7670 .0464 .8107 .0379
9ae
Æ

�Anxiety genes� to life events (G–E correlation) .2358 .0687 – –
U2

d Unique environment, depression .7539 .0606 .7417 .0615

U2
a Unique environment, anxiety .7696 .0499 .7883 .0615

U2
e Unique environment, life events .3212 .0266 .3467 .0257

)2ln(l) Deviance 5756.0 79.25 5825.0 79.33

Note: Means omitted for simplicity.

Table 2 MCMC estimates (10,000 updates after 25,000 iteration �burn in�) and summary statistics for model including G · E
interaction and rGE on post-pubertal depression in girl twins

Parameter Description Mean SD 2.5%-ile Median 97.5%-ile

Means
ld Depression mean ).0382 .0465 ).1298 ).0375 .0515
la Pre-pubertal anxiety mean .0022 .0339 ).0639 .0025 .0678
le Life events mean .0008 .0471 ).0917 .0015 .0921
Path coefficients: main effects
9d
Æ

Genetic, specific to depression .4136 .0665 .2817 .4146 .5424
9a
Æ

Genetic, anxiety (may also affect depression) .4823 .0573 .3723 .4848 .5785
9ad
Æ

Genetic, from �anxiety genes� to depression .2939 .0854 .1064 .2990 .4475
9ed
Æ

Life events to depression .1278 .0628 ).0005 .1279 .2485
9c
Æ

Shared environment, life events .7646 .0484 .6658 .7659 .8548
9ae
Æ

�Anxiety genes� to life events (G–E correlation) .3274 .1026 .1161 .3322 .5169
Path Coefficients: G · E interaction
cd
Æ

Specific �depression genes� · life events .5141 .0679 .3776 .5144 .6483
cd
Æ

�Anxiety genes� · life events .2409 .0941 .0581 .2430 .4201

Residual (non-shared) environmental variance components
U2

d Unique environment, depression .4897 .0347 .4261 .4878 .5611

U2
a Unique environment, anxiety .7732 .0519 .6782 .7711 .8814

U2
e Unique environment, life events .3346 .0264 .2866 .3337 .3891

)2ln(l) Deviance 5452.0 75.57 5308.0 5450.0 5605.0
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these effects in the full model confirms they cannot
be ignored.

The reduced models demonstrate the misleading
conclusions that might ensue from the typical prac-
tice of fitting a purely linear model without G · E
when G · E interaction is actually present. Firstly,
the effects of genes specific to depression, 9d

Æ
, are less

apparent and might even be discounted as not sig-
nificant. The model including G · E assigns
approximately 17% ± 5% of the total variance in
depression to genes that affect depression but not
anxiety. If G · E is ignored, the proportion falls to 7–
8% ± 6%. Secondly, the contribution of unidentifi-
able non-shared environmental effects, U2

d; is grossly
overestimated (.7539) in the additive model (Table 3)
in comparison with the estimate (.4897) when G · E
is included in the model (Table 2). Thirdly, if genetic
effects on exposure to life events (rGE) are ignored
(setting 9ae

Æ
to zero), the estimated direct main effect

of life events on variance in depression is more than
doubled from a barely significant 2.1% ± 1.7% under
the full model to 4.9% ± 1.7% when rGE is ignored.
The path 9ed

Æ
is increased from .1278 to .2171.

Discussion and conclusions

The pathway to post-adolescent depression involves
the main effects of genes and environment, G · E
interaction and G–E correlation. We believe this is
the first analysis that has demonstrated the poss-
ibility of analyzing G · E in humans when genetic
differences also influence exposure to salient ran-
dom environments (rGE). The analysis was accom-
plished easily within the MCMC framework. Our
results apply to outcomes measured as symptom
counts and environments assessed by a count of
salient life events. We recognize that the importance
of G · E interaction depends on the scale of meas-
urement and may often be removed by a change of
scale (Mather & Jinks, 1982). The outcome meas-
ures are not normal, although we have assumed that
all random effects are normal, so the possibility that
some of the G · E is scale-dependent cannot be
discounted.

Our integrated model yields a picture of three
distinct pathways through which genetic differences
affecting early anxiety influence later depression:
1) genes influencing early anxiety affect overall
liability of the child to develop depression (genetic
�main effect�); 2) individuals at genetically high risk
for anxiety are exposed disproportionately to envir-
onmental adversity (G–E correlation); 3) individuals
with higher genetic liability, who are exposed to the
double disadvantage of correlated environmental
adversity, are more sensitive to the damaging effects
of their environment (G · E interaction). In addition,
when G · E is included in the model, we find that
part of the genetic risk to depression is not shared
with earlier anxiety, but reflects genes whose effects

are specific to depression that have a large effect on
sensitivity to environmental stress. These effects
would have remained undetected by conventional
linear structural models.

We cannot know whether our findings will stand
the test of replication, but we hope they will stimu-
late other investigators in developmental behavioral
and psychiatric genetics to experiment with non-
linear models. We also hope that our analysis will
help make it clear that �finding the genes�, though
important, is not the only positive contribution that
genetics can make to analyzing the mechanisms
underlying behavioral development. Our analysis of
anxiety and depression shows the same genes have
different effects at different stages of development
and provides a genetic basis for one form of hetero-
typic continuity and comorbidity. We also show how
models for development that ignore the epigenetic
interplay between genes and environment in the
form of G · E and rGE do not give an adequate ac-
count of the development of depression. Indeed, we
find that including G · E in the model for depression
explains some of what traditional analyses had
consigned to the relatively large effect of the �non-
shared� environment. Whatever may be the ultimate
outcome of attempts to identify specific genes
(quantitative trait loci) that account for the genetic
component of depression, a thorough understanding
of psychopathology will require that psychiatric
geneticists and genetic epidemiologists take ser-
iously the epigenetic mechanisms that depend on the
behavior of the human organism and opportunities
for learning made possible by human evolution. Our
statistical analysis shows that failure to include
G · E and rGE in the genetic analysis of depression
trivializes the role of the person in his/her own
development, leads to overestimation of the contri-
bution of within-family (�non-shared�) environmental
effects, and overestimates the direct effects of envir-
onmental covariates on the depressive phenotype.
We hope that our approach may help other invest-
igators to broaden their conceptual and analytical
horizons beyond the limitations imposed by current
approaches to behavior-genetic modeling.
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