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Abstract 

To assess the impact of stimulus complexity, training, gender, and strategy use on 

mental rotation performance, a mathematical model was fit to data from first-year engineering 

students (n = 556).  Subjects completed 24 Shepard-Metzler and 24 newly developed, more 

complex mental rotation items administered immediately before and immediately after one of 

two 12-week engineering graphics design courses.  The training group (Penn State students) 

received extensive practice with mental rotations on a Computer-Aided-Design program, while 

the contrast group (Cooper-Union students) received a more traditional engineering graphics 

curriculum.   

Studies assessing the effects of training, gender, and item complexity on spatial task 

performance have typically focused on conventional, normal-theory based analyses in trying to 

understand these individual differences.  Yet there are no individual difference parameters 

available in these conventional models, and only variables chosen a priori by the researcher 

can be tested (i.e., age, sex, etc.).  Empirical results also indicate that the normal-theory 

framework is less than ideally suited to evaluate individual differences in mental rotation 

performance.  Instead, a mixture of binomials model is developed which expands on previous 

models of spatial task performance in that it was applied to longitudinal data of varying 

complexity to evaluate gender differences and performance change with different types of 

training.   In addition, the current model formulation allows insights into the nature of subjects' 

strategy use. 

The mixed binomial model posits that the general population is made up of more than 

one (in this case two or three) different "types" or "kinds" of individuals, each with its own 

level of performance on mental rotation items.  Performance for each of these "types" or 
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"kinds" is represented by its own binomial distribution, and these component binomial 

distributions form the mixture.  Parameters for one, two, three, and four component binomial 

mixture models were estimated and fit to the data.  In almost every case, the two component 

model provided the best fitting, simplest model of performance, suggesting that the population 

consists of two performance groups or latent classes.  Results indicated that the bivariate data 

(for example, data for each subject from time 1 and time 2) were well modeled by a bivariate 

mixture of binomials distribution which provides information concerning shifts in performance 

from one component group or latent class to another over time. 

Results were consistent with previous studies which found a robust sex-difference 

favoring males.  While males scored slightly higher "on average" than females, sex-differences 

have a very different interpretation than that usually presented in the literature.  Within the 

current modeling perspective, sex-differences were shown to be the result of differential rates 

of membership in each of the two component groups.  In effect, some members of both sexes 

appear to perform at near ceiling levels, while a segment of both the male and female 

populations appear to perform at the same lower level.  However, a larger percentage of males 

was classified as having "come from" the better performing group, while a larger percentage of 

females was classified as having "come from" the worse performing group.  Furthermore, 

while there are differences between "high" and "low" performers regardless of sex, there were 

few differences between males and females when they were from the same latent class.  In 

addition, males and females showed approximately equal changes in the proportion of subjects 

classified in the higher performing group at time 1 and time 2, indicating that both sexes 

showed identical rates of improvement. 
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Subjects receiving the enhanced curriculum (Penn State students) showed greater 

improvement than those receiving the traditional curriculum (Cooper-Union students).  These 

performance increases were found to be characterized by dramatic shifts in the number of 

items correctly solved as indicated by subjects changing component group membership rather 

than subjects showing smaller, incremental increases in performance.  This evidence supports 

theories which predict abrupt rather than gradual performance change.  While the rate of 

improvement for females was non-significantly different than that for males, the greatest 

performance increases were seen in Penn State females, suggesting a sex by treatment 

interaction.  

In addition to sex and curriculum, item complexity was found to affect performance.  

The complex items were more difficult than the Shepard-Metzler items in that fewer subjects 

were classified in the higher-level performance group on the set of newer items.  In addition, 

some subjects showed a "same" response bias for the Shepard-Metzler items while others 

showed a "different" response bias for the more complex items, suggesting that even though 

problems which require "same" and "different" responses are of approximately equal difficulty, 

they are not always solved in the same fashion.  The response biases for "same" and "different" 

items are likely the result of piecemeal rotation strategies, while consistent ceiling performance 

is likely the result of a holistic rotation strategy.   

In sum, sex-differences, improvement over time, and complexity affects can all be 

accounted for by a mixture of binomials model.  These findings provide support for the view 

that latent classes of performance define strategy groups.  Moreover, because performance 

change is abrupt, performance changes over time appear to be the result of changes in 

strategies.  Furthermore, the model supports a growing body of literature which suggests that 
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spatial abilities are fundamentally unique and distinct from other abilities with respect to their 

latent class structure. 
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THE EFECTS OF STIMULUS COMPLEXITY, TRAINING, AND GENDER  

ON MENTAL ROTATION PERFORMANCE:  A MODEL-BASED APPROACH 

CHAPTER I  

 

Summary 

 

 Mental rotation ability has long been recognized as an important component of 

general spatial ability, intelligence, and vocational achievement.  Consistent empirical 

findings, including a sizable sex-difference favoring males and equivocal gains in 

performance with training, have been explained by a variety of theories.  

Each of the different theories used to explain spatial performance promotes 

different kinds of variables to account for empirical findings.  The psychometric 

approach has focused on task similarities based on factor analytic techniques.  Within this 

view, differences in intertask correlations between males and females, for example, 

describe the nature of sex-differences.  Information processing theories have focused on 

the mental processes which affect performance; for example, the differences in the ability  

to encode a particular set of stimuli.  Developmental theories, such as Piaget's theory, 

describe performance change in terms of general structural changes.  

Distinguishing between these theories' predictions concerning spatial abilities has 

been hindered by fundamentally flawed assumptions concerning the nature of the data 

used to evaluate their positions.  Normal-theory models of performance (e.g. factor 

analyses, ANOVA's, and Pearson correlation coefficients) have been used almost 

exclusively to analyze mental rotations performance, yet these models are poorly suited 
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to evaluate questions of individual differences.  The structural model assumptions that 

underlie these types of analyses define  individual differences in terms of experimenter 

chosen variables such as age or gender.   Important variables excluded in these analyses 

by the investigator become error variance.  Furthermore, differences between these 

variables in, for example an analysis of variance context, can only be viewed as 

differences between means.  For this type of interpretation to be useful, each group must 

be adequately characterized by a measure of central tendency.  Any other form of data 

are a priori inappropriate.  It is argued here that the data describing mental rotations 

performance and change over time can not be well characterized by a single measure of 

central tendency and that individual differences become obscured through the use of 

these kinds of analytic techniques. 

However, there are more informative methods of evaluating individual 

differences.  There is evidence to indicate that responding on accuracy trials is a 

stochastic process affected by the different component processes used to make mental 

rotation decisions.  Further, evidence suggests the existence of at least two "types" or 

"kinds" of subjects whose performance is being measured.  The current study attempts to 

frame questions of mental rotations performance in terms of a strong mathematical model 

designed to illuminate the nature of individual differences in mental rotations 

performance and performance change which takes these findings into account.   

A mixture of binomial distributions model that has been successfully used to 

account for individual differences on other spatial tasks has been adapted to the current 

task. Individual differences in performance over time are viewed in terms of a small 

number of discrete performance groups, each with a different performance level. In 
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effect, different "types" or "kinds" of performers are viewed as having been sampled 

from the general, mixed population.  The proposed model allows individuals to be 

categorized into their component groups based on their performance, so that, for 

example, performance shifts can be tracked over time. 

Mathematical models, such as the one proposed here, have the advantage of  

precisely describing and evaluating variables of importance.  Once individual difference 

variables are successfully accounted for, theoretical questions can be addressed more 

adequately.  Furthermore, the proposed model provides a general framework with which 

to view performance within the broader context of mathematical psychology. 

An intervention using a Computer-Aided-Design (CAD) package was provided to 

all  Penn State first-year engineering students in the fall of 1993 in an attempt to improve 

their ability to perform vocationally-related mental rotations (See Table 1 for a summary 

of the subject distribution and Chapter II, page 48 for a more detailed account of the 

study conditions).  Their performance on a mental rotations task (which used items from 

the Vandenberg and Kuse (1978) mental rotations task and similar, but more complex 

items, see Appendix A) was compared to a group of  Cooper-Union College first-year 

engineering students who received a traditional engineering graphics curriculum, before 

and after training (See Table 1).   The traditional engineering graphics curriculum used a 

crude wire-frame CAD program that does not allow objects to be manipulated as 

naturally or as easily as the intervention CAD software. 

A comparison of these two groups of subjects was used to reveal differences in 

training techniques and provide insight into performance as it relates to performance 

change over time, the effects of stimulus complexity on performance, and whether 
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different strategies are used to solve these types of mental rotation problems.  Specific 

hypotheses are presented in detail at the end of this chapter.  These questions, once 

answered in a more satisfying way, can then be used to address theoretical issues 

concerning how performance changes over time.  To provide a brief example, consider 

the issue of transfer of mental rotations skill (this issue is operationalized in more detail 

in the hypotheses section).  Olson and Bialystok (1983) argue that the cognitive 

operations required for mental rotations (and spatial cognition in general) have their basis 

in the ability to construct propositional descriptions.  The only way to acquire suitable 

labels for object parts is through interaction with them.  As a result, training with one set 

of objects should not improve performance on unfamiliar objects because the labels are 

unique to each object and can not be re-used.   Olson and Bialystok (1983) found 

evidence to support this view.  In contrast, Piagetian theory would predict that the 

operations involved in an internalized abstract coordinate system could then be applied to 

a host of problems which require those operations.  In the current study, the relative 

advantage of the treatment group would be denied by Olson and Bialystok, but supported 

by Piaget.  Other theoretical differences will be examined below. 

Introduction 

 Correlational and mean-based analyses of manifest or observable variables have 

been used to the exclusion of almost all other methods in describing spatial abilities (Linn 

& Petersen, 1985).  However, evidence of latent-classes of performers (i.e., clusters of 

subjects defined by their similarity on some latent or unobservable variable) has been 

found on several spatial tasks suggesting that these normal-theory based approaches are 

inappropriate (Thomas & Lohaus, 1993; Thomas & Turner, 1990; Turner, 1991).  In 
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addition, factor analyses, based on inter-task correlational matrices, depend on strategy 

similarity across subjects, yet this assumption may not be valid (Cooper & Mumaw, 

1985; Lohman & Kyllonen, 1983; Lohman, 1988). Theoretical positions either tested 

with or based on seriously false models are bound to be substantially inaccurate.  As 

Lohman and Kyllonen (1983) point out, recognition of this possibility entails a 

fundamental change in the way test scores are conceptualized.  This kind of 

reconceptualization is exactly what the present study proposes.  The goal of the current 

research is to interpret performance and performance change on a mental rotations task 

from a modeling perspective,  and then apply these findings to current theory.  This effort 

should be viewed in part as exploratory because there is no widely accepted model of 

performance or performance change except those implicitly based on normal-theory.  

After performance and performance change have been properly modeled, explanations 

for individual differences in performance based on this model will be developed. 

 The remainder of this chapter is divided into three sections.  The first is 

concerned with a summary of the major research findings on mental rotation ability and a 

subsequent discussion of relevant theory including the role of strategies.  The influences 

of practice and training on performance are described next, followed by a mathematical 

approach to psychological investigations and the specific model formulations involved in 

the present study.  Finally, a description of the study’s design and a list of hypotheses are 

presented. 
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The Mental Rotation Construct 

General Findings 

Spatial abilities have long been viewed as important components of general 

cognitive ability (Thurstone, 1938).  The ability to mentally manipulate two- or three-

dimensional images rapidly and accurately, and then act on the resulting mental 

representation has been considered a central component of general spatial ability.  Skill in 

mental rotation facilitates mastery of many substantive areas, including mathematics, 

chemistry, engineering, architecture, and aviation (Brinkman, 1966; Gordon & Leighty, 

1988; Kyllonen, Lohman, & Snow, 1984; Seddon, Eniaiyeju, & Jusoh, 1984; Shubbar, 

1990), and has some predictive validity in personnel selection (Ghiselli, 1973). 

Reaction time studies have found that the time required to mentally rotate a 

stimulus monotonically increases with the amount of rotation required (Cooper & 

Shepard, 1973; Shepard & Cooper, 1982; Shepard & Metzler, 1971).  This finding is 

consistent across tasks which use widely differing stimuli including letter-like characters 

and abstract geometric figures (e.g., Kail, Carter & Pellegrino, 1979; Shepard & Cooper, 

1982). 

When accuracy, as opposed to reaction time, is measured, object complexity 

appears to have a large impact.  When two-dimensional letter-like objects are rotated, 

adults have near ceiling accuracy scores.  Complex, three-dimensional stimuli, on the 

other hand, substantially reduce accuracy rates (e.g., Folk & Luce, 1987; Yuille & 

Steiger, 1982). 

By about age 9, males show a distinct superiority in both accuracy of judgments 

and speed of rotation (Johnson & Meade, 1985; Linn & Petersen, 1985). This sex 
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difference has been observed across a wide variety of rotation tasks, though it is more 

pronounced in the Shepard and Metzler (1971) version. In their meta-analysis, Linn and 

Petersen (1985) estimated that males perform on the order of one standard deviation 

better than females.  These results give the impression that women are less spatially able 

than men.  However, Tapley and Bryden (1977) indicate that there is a substantial 

minority of women who outperform men on psychometric measures of spatial ability.  

Eliot (1987) points out that sex-differences are characterized by trends, but that the 

majority of data variance is more readily accounted for by individual differences than 

sex-differences.   

However, as Thomas and Lohaus (1993) make clear, the normal-theory based 

approach most often used to analyze mental rotation data is not amenable to studying 

individual differences. Lohman and Kyllonen (1983) describe the two most common 

methods of viewing individual differences as an attempt to find either cognitive correlates 

(the psychometric tradition) or cognitive components (the information processing 

approach).  These two methods are considered in turn.  Because performance change over 

time is of interest, developmental and learning perspectives will also be discussed. 

Psychometric Approach 

 Historically, psychometricians have considered spatial abilities from a factor 

analytic perspective.  The carving of spatial abilities into a small set of component 

abilities and establishing their relationships has been accomplished by administering 

large batteries of spatial tests and then examining their covariance structures. These 

models work under the assumption that tasks load on a particular factor as a result of 

their shared underlying processes.  It is these presumed mental processes that govern 
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individual differences in performance.  Lohman’s (1979, cited in Eliot, 1987) re-analysis 

of data from early factor analytic studies led to him to postulate that there are three basic 

spatial factors: speeded rotation, spatial orientation, and visualization. In a review of the 

psychometric literature, McGee (1979) came to similar conclusions.  While the process of 

mental rotation is common to many tests, proficiency is due to both speed-related and 

visualization-related elements.  The visualization factor appears to best describe the kind 

of relatively unspeeded, complex rotation problems characterized by the Vandenberg and 

Kuse (1978) mental rotation task under examination in this investigation. 

 While psychometric theory has provided valuable information regarding mental 

rotation ability, there are inherent limitations to this approach.  Factor analyses rest on the 

assumption that tasks loading on the same factor share mental process requirements, and 

consequently that solution strategies on each task are consistent for each subject 

(Lohman, 1979, cited in Eliot, 1987).  There is enough empirical evidence to doubt the 

validity of this assumption (Carpenter & Just, 1986). Lohman and Kyllonen (1983) found 

that when subjects could be sorted according to natural strategy groups, different factor 

structures emerged for each strategy group, suggesting that the combined factor structure 

was misleading. Furthermore, Lohman (1988) argues that spatial tasks load highly on a g-

factor because this factor characterizes subjects’ ability (although not necessarily 

inclination) to use multiple strategies in solving similar problems.  Factor analysis also 

assumes multivariate normality, yet the suggestion of different strategy groups and 

strategy shifting cast doubt on this assumption. 

 Factor analysis is further hindered by an abundance of rotational techniques 

which often yield different results.  Currently, there is little agreement as to which 
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rotational method is best (Cooper & Mumaw, 1985; Eliot, 1987; Poltrock & Brown, 

1984).   Linn and Petersen (1985) point out that factor analytic techniques are sensitive to 

the tasks involved, and as such solutions for different tasks may never lead to a general 

factorial representation of spatial abilities.   

Information Processing Approach 

Information processing accounts of mental rotation ability have been divided into 

three areas: imagery (or visualization) theories, process-based theories, and propositional 

theories.  

Imagery theories.  The imagery account is based on an assumed relationship 

between visual imagery and spatial abilities. Paivio (1971) describes imagery as a 

symbolic process that anticipates alternative responses to cognitive problems.  While 

visualization is usually defined as a general ability encompassing more than spatial 

abilities, visualization seems to play an important role in how space is conceptualized 

(Lohman, 1986; Poltrock & Brown, 1984).   

Kosslyn (1980) has advanced a general theory of imagery which has implications 

for the study of spatial representations.  He argues that people make use of analog mental 

representations that preserve the qualities found in perceptual representations, like 

distance and position relationships.  Kosslyn has developed a computer model that 

mimics the processes unique to mental images.  These processes (e.g., scanning, 

zooming, rotating and refreshing images) are quite similar to those that would be found 

on a Computer-Aided-Design (CAD) program.  As evidence for his theory, he has tried 

to demonstrate that subjects report on or use information from their mental images as 

though they had perception-like qualities.  For example, subjects scan images to find 
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pieces in the same way that they would scan a photograph or an actual scene.  The time 

required to search for an object in a mental image seems to correspond to its distance 

from an initial viewpoint.  He has also found that subjects’ images have a limited 

resolution and spatial extent in the same way that perceptual images do.  Wallace and 

Hofelich (1992) have found evidence to support this view, observing that the components 

of imagery influential in image rotation are predicted by Kosslyn’s theory. 

Shepard reasoned that if an analog process of mental rotation of the kind 

suggested by Kosslyn is correct, then the time necessary to mentally rotate an image 

should reflect the amount of rotation necessary.  To test this hypothesis, Shepard and 

Metzler (1971) presented subjects with pairs of two-dimensional line drawings of three-

dimensional figures.  Subjects were asked to determine as quickly and accurately as 

possible whether the two images were the same or different.  Results indicated that the 

time required to make judgments for identical objects was linearly related to the angle of 

rotation necessary to bring the objects into congruence.  He and his colleagues (Shepard 

& Metzler, 1971; Shepard & Cooper, 1982) contend that this pattern of observed reaction 

times could only be the result of analog mental rotation.  Because this view relies on 

mental imagery to explain mental processes, the quality of subjects’ mental images 

should have a profound impact on their ability (Carpenter & Just, 1986; Juhel, 1991; 

Pellegrino & Kail, 1982; Poltrock & Brown, 1984). Lohman (1986) and Poltrock and 

Brown (1984) have gone so far as to argue that the quality of internal visual 

representations characterizes spatial ability.  

Olson, Eliot and Hardy (1988), Ozer (1987) and Tapley and Bryden (1977), for 

example, found that visualization skill was related to spatial performance for men, but not 
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women.  These findings provide partial support for the interpretation that the mental 

images of high spatial individuals are more highly organized, and thus more useful in 

problem solving, than those of low spatial individuals (Eliot, 1987).  Further support for 

this view comes from Shepard and Metzler’s (1971) original work.  They argued their 

analog mental rotation theory based on the performance of subjects pre-selected for their 

high spatial ability.  It would appear that at least high spatial subjects have the requisite 

visual imagery skills to mentally rotate stimuli.  

Process theories.  Kail and his colleagues (e.g., Kail et al., 1979; Mumaw, 

Pellegrino, Kail & Carter, 1984) acknowledge that imagery plays a role in spatial task 

performance, but focus on the component processes required to make spatial judgments.  

The total time required to respond "same" or "different" to images rotated out of 

alignment is assumed to be the additive sum of four individual processes: encoding, 

rotating, comparing, and responding.  The rotation process varies as a function of the 

angular separation between the stimuli, but all four processes are thought to be influenced 

by variables such as the familiarity and complexity of the stimuli.  Pellegrino and Kail 

(1982), for example, predict that subjects in general will be less likely to respond 

correctly to more complex stimuli because there are more processing operations 

necessary for complex items. While the time required for each step may change with 

stimulus variations, the processes themselves remain constant.  As such, learning, 

developmental and individual differences are all characterized by reference to these four 

processes. 

Propositional Theories.  There are other theoretical orientations which account for 

chronometric mental rotation data without reference to mental images.  Connectionist 
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models of cognition have been constructed which can predict the linearly increasing 

response times and the trajectories that rotated objects pass through (Funt, 1983; Goebel, 

1990).  Folk and Luce (1987) equate this type of model to more conventional 

propositional theories of spatial ability. 

Propositional theorists describe the representations necessary for solving mental 

rotation problems as neither imaginal nor verbal.  Anderson (1978), Olson and Bialystok 

(1983) and Pylyshyn (1981) describe a general theory of cognition applicable to a wide 

range of spatial phenomena.  Images become nothing more than epiphenomenal by-

products derived from propositional representations.  According to Anderson (1978), 

spatial propositions have three defining qualities.  First, they are abstract and more basic 

than lingual propositions.  Second, they have truth value, and as such can be evaluated in 

much the same way that propositions are evaluated in formal logic problems.  Third, they 

follow a basic set of rules for their formation. 

Spatial cognition is based on the structural descriptions of objects.  The mental 

predicates used in spatial representations closely mirror verbal predicates like "top," 

"over," and "in front of" (Olson & Bialystok, 1983).  In fact, these authors argue that 

linguistic spatial categories emerge out of the more fundamental structures of perception 

and thought.  Like an imagery theory, a propositional account of representation includes 

the notion that perceptual and constructed representations share features which allow 

them to be compared easily.  

 Olson and Bialystok (1983) argue that the absence of namable parts (e.g., top, front) 

makes the formation of descriptions from one’s own or an observer’s perspective more 

difficult for problems of the Shepard and Metzler (1971) type than it is for familiar objects 
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like cars and bottles. They suggest that parts of abstract images are labeled with structural 

descriptions based on the object’s initial orientation with respect to the observer.  Solving 

mental rotation problems becomes the four-fold problem of (1) "naming" the structural parts 

in the target display, (2) finding them again in a comparison display, (3) noting the rotation 

angle between the structural components of the two displays, and then (4) evaluating the 

similarity of the relations between their structural parts.  Comparisons continue until all of 

the features have been judged or until a mismatch is found. 

 As Anderson (1978) has argued, behavioral investigations may not be the most 

productive method of evaluating whether subjects’ representations are imaginal or 

propositional.  The goal of this study is not to attempt to resolve the debate concerning 

the form of the representations used to solve mental rotations problems, but rather, to 

better characterize performance and to evaluate different theoretical positions in light of 

the model of performance described below.  Anderson (1978) argues that while 

behavioral data cannot distinguish between classes of theories which postulate different 

representational systems, they can be used to distinguish between specific theories. 

Developmental Theory 

Process theories.  Much of the developmental literature concerned with mental 

rotation has been produced by information processing theorists.  Typical of this approach, 

Kail and his colleagues (e.g., Kail, 1991; Pellegrino & Kail, 1982; Kail, Pellegrino & 

Carter, 1980) describe individual and developmental differences in terms of process 

differences.  Learning and development are attributed to improved processing in any one 

of the four steps outlined above, such as encoding and comparison, both of which 

improve with age (Kail et al., 1980; Kail, 1991).  Increased processing ability can result 
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in changes in strategies though, indicating a change in instance-based or procedural 

(rather than declarative or process-based) knowledge (Carter, Pazak, & Kail, 1983; Kail 

& Park, 1990; Lohman & Nichols, 1990). 

Propositional theories.  In contrast, Olson and Bialystok’s (1983) account of 

spatial development is based on their propositional theory of spatial cognition.  

Development, according to this view, is the process of extracting forms from implicit 

perceptual structures and relating them to explicit representational structures.  For example, 

linguistic spatial categories are thought to develop out of more basic implicit perceptual and 

cognitive structures. Olson and Bialystok (1983) take children’s drawing as evidence for this 

view, by noting that at very young ages children represent a multitude of objects with a few 

simple spatial forms.  This performance is consistent with the small number of lexical forms 

young children have for describing the world.  In adulthood, however, just as language has 

become more enriched, so too has spatial representation. 

According to Olson and Bialystok (1983), developmental differences in spatial 

ability are most strongly related to the ability to intentionally define arbitrary structural parts 

in non-canonical (e.g., abstract) objects, which young children have greater difficulty with 

than adults.  This difficulty arises because there is little linguistic information available in 

abstract objects to help younger children.  There is empirical evidence to support this 

position.  Kail et al. (1980) found that the abstract characters from the test of Primary Mental 

Abilities (PMA) are more difficult to rotate than alphanumeric characters because the PMA 

characters are not as easily "labelable" as familiar letters or numbers.  Similarly, Hochberg 

and Gellman (1977) and Alington, Leaf, and Monaghan (1992) found that the addition of 
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landmark features to objects facilitated their rotation.  Additionally, Hoch and Ross (1975) 

found that item familiarity increased mental rotation performance. 

According to this theory, practice provides familiarization with objects even without 

readily available linguistic information.  As a consequence, the ability to uniquely identify 

the structural features of an "abstract" array and form useful structural descriptions of the 

familiarized objects increases with practice.  

Olson and Bialystok (1983) used films depicting rotation and direct manipulation in 

an attempt to teach mental rotations.  They found that approximately 12 minutes of task-

related training resulted in improved post-test performance.  This suggested that children 

lacked explicit identifiers for the structural features in the Shepard and Metzler (1971) type 

object.  These findings imply that it is not simply practice that improves mental rotation 

performance, but practice that allows the formation of adequate structural descriptions of 

objects. These structural descriptions, which represent changes in declarative knowledge 

(Lohman & Nichols, 1990), are then used in identical  mental rotation tasks.  It is only when 

changes in procedural knowledge occur that transfer is likely to other rotations tasks, 

however, because the structural features of an object are specific to that object.  It may be 

noted that the abstract items used in their study had features that were more easily labelable 

than those used by Shepard and Metzler (1971) and in the current study.  Ease in labeling the 

features of the rotation objects was likely to have made structural descriptions more 

accessible to Olson and Bialystok's (1983) subjects, but less likely to facilitate general 

mastery of rotations. 

Piaget’s theory.  Piaget’s theory of development stands in contrast to the accounts 

previously presented.  According to Piaget and Inhelder (1956, 1971), conceptual level 
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determines representations.  It is only after projective and Euclidean concepts have been 

developed and coordinated that objects can be represented and transformed by rotation.  

Mental rotation requires the coordination of dimensions in terms of displacement about a 

set of axes, and would therefore be a later developing ability.   

Just and Carpenter (1985) found empirical support for this position.  Subjects 

who performed most accurately on a mental rotations test were able to define an abstract 

coordinate system independent of the rotated object.  The least accurate subjects, in 

contrast, could only make reference to the coordinate axes defined by the object.  These 

authors argue that the information available from the use of an independent coordinate 

system allows better performance.  Performance on Piaget and Inhelder’s (1956) water-

level task is similar in that poor performers on that task were constrained by the frame of 

the vessel, while good performers were able to construct and use an external coordinate 

reference system.   

Successful mental rotations signifies the ability to represent perspective changes 

in terms of operations that define the coordination of different viewpoints.  These 

operations include reversibility and the idea that a projection in one dimension is 

accompanied by corresponding reduction in another dimension (i.e., a grouping of the 

relationships which comprise the three spatial dimensions). Ultimately, the 

correspondence of different perspectives are linked via a representational coordinate 

system. The metric properties (straight lines, distances, and angles) of an object must be 

conserved during the transformation, otherwise two different objects will be compared.  

In fact, identifying two mental rotation items as different might be viewed as the 

successful recognition that Euclidean relationships have not been conserved.  
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Development, according to Piaget and Inhelder (1956), results from the 

internalization of action and imitation through visual perception.  Actions and perceptions 

allow rotational transformations to become operationalized and coordinated.  According 

to Piaget, mental images contain neither the relationships between parts of an object nor 

an object’s relationship to a coordinate system.  These relationships must be formed 

constructively, thereby allowing the image to be used in different schemes.  Those 

structures which entail the logical application of operations to many tasks could also be 

viewed as improvements in procedural knowledge. 

 According to Piaget and Inhelder (1956, 1971), the requisite operations for 

successful mental rotation should be in place when thought is concrete operational.  As with 

other Piagetian tasks (e.g., the water-level task), many individuals do not seem capable of 

this level of performance even well after adolescence. 

Practice and Training 

The effects of practice and training have been equivocal, though few training 

studies have been undertaken (Eliot, 1987).  Of those conducted, most have been 

implemented over short time spans, neglected generalizability, or have trained subjects to 

a criterion on a particular task.  There are a few notable exceptions which provide 

insights into performance change.  

Baenninger and Newcombe’s (1989) meta-analysis revealed that relatively long-

term training programs can be effective in improving spatial abilities.  VanVoorhis 

(1941), for example, demonstrated over the course of a year that visualization training in 

freshmen engineers provided significant gains in mental rotation performance over a 

matched control group.  Blade and Watson (1955) concluded that completion of first-year 
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engineering courses was correlated with improvement in spatial task performance.   

Additionally, Brinkman (1966) found that training in a geometry course that focused on 

visual problem solving improved spatial task performance.  Olson et al. (1988) found a 

positive relationship between spatial performance and participation in a variety of 

technical courses.  In addition, researchers have made connections between performance 

and activities that seem to promote spatial competency including the use of computers in 

both game playing and programming (McLurg & Chaille, 1987; Miller, Kelly, & Kelly, 

1988).   

Because boys and girls participate differentially in "spatial" activities, Sherman 

(1967) hypothesized that females would be more receptive to spatial training because 

they are farther from asymptotic performance.  Several researchers have found evidence 

that training is of greater benefit to females (Connor, Serbin & Schackman, 1977; 

Connor, Schackman & Serbin, 1978; Lohman & Nichols, 1990).   While Baenninger and 

Newcombe’s (1989) meta-analysis revealed little support for this view, meta-analyses 

based on means which fail to take group membership into account might be misleading. 

In general, training studies have the largest impact when they are task-specific, 

even though generalizability suffers (Baenninger & Newcombe, 1989).  For example, 

mental rotation performance improves after inspection of physical models.  The use of 

sequential diagrams and films which depict rotation also have a large impact on mental 

rotation improvement (Kyllonen et al., 1984; Olson and Bialystok, 1983; Willis & Shaie, 

1988).  Subjects’ performance benefits when problem attributes such as the distortion of 

angles and relative cue size are made salient (Connor et al., 1978; Seddon et al., 1984), or 
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when simply provided with feedback after each response (Kyllonen et al., 1984; Lohman 

& Nichols, 1990). 

There is evidence to suggest that training is not automatically beneficial.  

Kyllonen et al. (1984) and Cooper and Mumaw (1985) have presented evidence that 

training is mediated by an aptitude by treatment interaction.  Training success varies as a 

function of subjects’ natural strategies.  Visually inclined subjects responded positively to 

visual training, but negatively to verbal training.  Likewise, subjects prone to use verbal 

methods improved when provided with verbal training, but their performance suffered 

from visual strategy training. 

Practice effects have been documented even in the absence of training (Bethel-

Fox & Shepard, 1988; Kaplan & Weisberg, 1987).  McLurg and Chaille (1985) and 

Willis and Shaie (1988) found that practice proved more effective for females than males. 

Kail’s (1986) finding that subjects deficient in practice demonstrate superior 

improvements in accuracy, implies that females, in general, do not get as much practice 

as males in spatial activities. 

Bethel-Fox and Shepard (1985) found evidence consistent with the view that practice 

results in changes in declarative knowledge, in that transfer was limited to practiced items.  

Kail and Park (1990) made similar observations about the lack of transfer from a practiced 

spatial task to a novel one.  Practice primarily results in improvements in declarative 

knowledge, yet extensive practice should provide subjects with more elaborate 

representations of rotation objects (Lohman & Nichols, 1990).  When used in a variety of 

circumstances, processes become decontextualized.  
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Kosslyn’s (1980) imagery theory predicts which kinds of practice are the most 

beneficial.  Wallace and Hofelich (1992) found that practice related to improvement in 

mental rotation affected tasks which require the same processes (e.g., rotating and 

refreshing), but not those tasks which necessitate the use of other processes.  This 

suggests that transfer is not necessarily restricted to identical problems, but to tasks with 

similar process requirements.   

The effects of practice without training in mental rotation appear to be mediated 

by the presence or absence of feedback (Lohman & Nichols, 1990).  Without feedback, 

reaction times decreased even though accuracy remained constant.  Presumably, without 

feedback, subjects get faster at responding incorrectly.  When feedback was provided, 

however, accuracy and latencies both improved. 

A Model Based Approach 

Motivation 

 The present work was, in part, motivated by an intuitive recognition that normal-

based models of performance have obscured patterns of individual differences (e.g., 

Lohman & Kyllonen, 1983), including evidence of latent classes of performers (e.g., 

Thomas & Kail, 1991).   

As evidenced in Linn and Petersen’s (1985) meta-analysis, age- and sex-

differences are almost universally interpreted as additive-shift models.  In this context, 

the distribution of male scores is conceptualized as identical to the distribution of female 

scores, differing only by an additive constant.  Thomas and Lohaus (1993) point out how 

inappropriate assumed shift models of performance can be by showing that the traditional 

view of sex and age differences as mean differences are misleading when compared to a 
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more appropriate model.  Eliot (1987) has noted that sex-differences are overshadowed 

by much larger individual differences.  Unfortunately, t-tests, analyses of variance, and 

correlations are not well suited to the study of individual differences.  Furthermore, 

measures of central tendency (i.e., sample means) do not provide much useful 

information when distributions are not unimodal, as in the case of mental rotation data 

(Turner, 1991).  As Pellegrino and Kail (1982), Brainerd (1979a) and many others have 

pointed out, group patterns may not reflect any individual's performance.  Even though 

these analyses cannot be expected to provide answers to many of the questions demanded 

of them, researchers employ them by default; a situation described by Box (1976) as 

"cookbookery" (p. 797).  Lohman and Kyllonen more generously describe it as "blind 

faith" (1983, p. 114).  For these reasons, the normal-based model seems manifestly 

inadequate (Thomas & Lohaus, 1993; Thomas & Turner, 1990; Turner, 1991).  Further 

evidence will be provided below to demonstrate that mental rotation performance is non-

normal and that group (e.g., sex) differences cannot be characterized by an additive shift 

model.  Despite the lack of alternative models presented in the mental rotation literature, 

a more plausible distributional model must be employed.  A model attributing group 

differences to differential membership in discrete populations, each described by 

different levels of performance, will be presented below.  

Evidence concerning the characteristics of mental rotation performance comes 

from two sources:  explicit models and patterns of data from previous research.  Thomas 

and his colleagues (Thomas & Lohaus, 1993; Thomas & Turner, 1991; Turner, 1991) 

found that a mixture of binomials distribution successfully characterized performance on 

different spatial tasks, so it is suggested that mental rotation performance may be similar.   
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Other researchers have postulated models of accuracy on mental rotation tasks 

which imply that the binomial distribution is relevant.  For example, Carter et al. (1983) 

introduce the following notation.  Let P(e
i
 ) represent the probability of an error on an 

identical item (one that requires a "same" response), P(e
mi

) represent the probability of 

an error on a mirror image item (one that requires a "different" response).  Now define 

the probability of an error on an identical image mental rotation item as P(e
i
) = 1 - (1 - 

α)
n

(1 - β), where α represents the probability of an error during mental rotation, n is the 

orientation of the stimulus item (in degrees), and β is the probability of an error in either 

the encoding, comparison, or response phases of the response.   When the two items are 

mirror images of one another P(e
mi

) = 1 - (1 - α)
n
(1 - λ) where λ represents the 

probability of making an error during the encoding, comparison and response phases of a 

mirror image trial, and α and n are defined as above.  If (1 - α)
n

(1 - β)  (1 - α)
n

(1 - λ), 

and the effects of rotation angle are small, then one might reasonably view the probability 

of an error as  

≈

≈ ≈1 - [(1 - α)
n

(1 - β)]  1 - [(1 - α)
n

(1 - λ)]  1 - [θ]. 

This is, in fact, the probability of an incorrect response in the binomial setting, where θ is 

defined as the probability of a correct response.  The assumption of approximately equal 

difficulty for identical and mirror images trials is supported by data from Damos (1990) 

and Pellegrino and Kail (1982), while the assumption concerning the small effect of 

rotation angle on the present task is supported by data from Carter et al. (1983) and 
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Lohman (1986).   As developed, however, this model cannot account for different error 

rates among different individuals. 

Evidence hinting that there is more than one population whose performance is 

being sampled abounds, though it is rarely recognized as such.  For example, Kail et al. 

(1979) found that sex-differences in mental rotation performance were characterized by 

the fact that a relatively large proportion, but not all, females had significantly longer 

reaction times than all males.  This finding implies that there is more than one "kind" of 

individual within the population. 

This type of evidence prompted Thomas and Kail (1991) to model latencies on 

the PMA test with a mixture of normals distribution, providing explicit evidence of two 

latent classes of performers.  Because a larger number of strategies are found when more 

complex tests are administered, a more complex model structure might be expected to fit 

Shepard and Metzler (1971) type items (Lohman & Kyllonen, 1983).  Distributional 

evidence based on a small number of subjects suggests that this is the case (Turner, 

1991).  

Patterns of performance that describe clusters of individuals have also been found 

(Cooper, 1982; Bryden, George, & Inch, 1990).  While no models are explicitly provided 

for understanding these clusters, latency and accuracy data appear to support the notion 

that there is more than one "kind" or "type" of performer.  For example, one cluster of 

individuals is characterized over multiple rotation tasks by the frequently observed 

pattern of correspondence between latencies and angular deviation, while another cluster 

is not.  Mislevy, Wingersky, Irvine, and Dann (1991) provide a model of reaction time 

performance which views the population as a mixture of strategy groups.  Frequencies of 
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errors also suggest that there are at least two qualitatively different subject clusters, 

perhaps differentiated by strategy choice.  Cooper (1982) argues that these clusters 

represent stable individual differences. 

Mumaw et al. (1984) found a similar pattern of clusters of performers with 

different latency and accuracy scores.  While they identify four groups of performers, 

their figures seem to indicate nearly identical performance for the middle two groups, 

suggesting that a data-driven model may have only found three groups.  Voyer and 

Bryden (1990) present almost identical data showing latencies clustered into three 

apparent categories.   

Lohman (1988) describes the differential effects of practice with feedback for 

high and low spatial subjects, suggesting that there are qualitative differences between 

these two groups of subjects.  Just and Carpenter (1976) found evidence based on eye 

fixations that high spatial individuals rotate objects holistically, while low spatial subjects 

use multiple rotations.  Kyllonen, Lohman, and Woltz (1984) also identified two groups 

of subjects based on their strategy use.  It might be that strategy differences distinguish 

high and low ability subjects, a hypothesis that latent class models are well suited to test.   

Researchers implicitly assume that the spatial ability construct is continuous, yet 

subjects are often split into ability levels based on either an extreme groups design or an 

arbitrary partition of percentile scores.  Without a formal model, ad-hoc groupings will be 

inconsistent across studies and strategy groups, making interpretations and 

generalizations difficult.  "Natural" groupings (i.e., those derived from the data) provide a 

much better approach to the problem.  This is not to imply that the choice of models is 

solely data-driven.  The form of the model, a mixture of binomials distribution, has both 
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direct and indirect support from previous research.  As with any model fitting procedure, 

a close correspondence between the data and the model is desirable.  The values of the 

estimated parameters, however, will be based completely on sample data. 

Benefits of Modeling  

 The advantages to a modeling perspective are in its general applicability, its 

precision and its specificity of predictions (Coombs, Dawes, & Tversky, 1970). By 

employing a "bottom-up" modeling procedure that allows the data to guide the form of 

the model, those variables important to describing individual differences can be precisely 

described and evaluated.  Furthermore, the model proposed here is a strong mathematical 

model.  Strong models have the advantage that they are easily falsifiable.   

As Thomas and Lohaus (1993) point out, to specify causative variables without 

knowledge of the structure of the phenomenon of interest is to place the cart before the 

horse.  To begin with a suitable model structure, and then let the model resolve variables 

of importance would seem to be a more productive approach. 

Bejar (1990) points out that there is often conflict between psychometric and 

information processing approaches because each perspective emphasizes different 

performance aspects.  It is argued here that this need not be the case.  Any successful 

model of task performance should elucidate the issues relevant to task success from a 

substantive (i.e., information processing, developmental, personnel selection, etc.) 

perspective.  Otherwise, a model is of little more than academic interest. 

Description of the Current Model 

The approach to mental rotation performance suggested here is conceptually 

neutral in the sense that it can be applied to any circumstance where its assumptions are 
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met.  The current model is based on the theory of mixture distributions, specifically a 

mixture of binomials distribution.  Performance on this and other spatial tasks has been 

successfully modeled by a mixture of binomials distribution (Thomas & Kail, 1991; 

Thomas & Lohaus, 1993; Thomas & Turner, 1990; Turner, 1991).  In these studies, two 

or more "kinds" of individuals were found whose performance was being measured.  

Once the structure of the data is evident, the model can be used to evaluate current 

theories or construct new ones. Further, individuals can be identified with respect to their 

performance group.  Subjects’ performance can be followed across time or across tasks 

providing insights, for example, as to whether improvement is best described as either 

incremental and gradual (i.e., does an entire group improve slightly on average?) or 

abrupt and stage-like (i.e., do individuals move from one group to another?). 

A Model of Task Performance - The Univariate Case 

The probability model is developed as follows.  Let j represent the individual 

trials (j=1,...,n), and let i represent the individual subjects (i=1,...,m).  Define a discrete 

random variable U such that U=1 for a "success" and U=0 for a "failure" for a given trial 

or item.  Let P(U=1) =  θ, and P(U=0) = 1 - θ,  0 < θ  < 1.  Now, define X = U
i

, where 

each U
i
 has the distribution of U, so that X represents the sum of the successful trials for 

any individual subject.  Under the assumption that θ is constant across all j trials and all j 

trials are independent, X is binomial in distribution, and is described by 

Σ

 

 (x) = b(x; n, θ) = f
n
x

 




  θ 

x
(1-θ)

n-x
 .                                             (1) 
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The mean of X is given by 

 

  µ = E(X) = nθ ,                                                            (2) 

 

where the symbol E denotes an expectation.  The variance of X is given by 

 

 σ
2
 = V(X) = nθ(1-θ),                                                                (3) 

 

and the symbol V denotes a variance.  This model represents the performance of each 

individual i, but it must be expanded to include all m individuals.  By assuming that θ 

describes the probability of success for all m individuals and that their responses are 

independent, the simple binomial model could be used.  However, as anticipated by the 

research cited above, this model is expected to give a poor fit to the data.  All individuals 

do not appear to have the same value of θ. 

 Different clusters or groups of individuals, conventionally termed components in 

this setting, might be characterized as having the same probability of success.  The 

binomial structure could be preserved within each component, but different θ-values 

would be used to describe each group.  This situation is described as a mixed binomial 

because two or more populations (each with its own binomial distribution) are mixed 

together in the general population. 
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 For example, suppose the proportion π
1

 of the population has scores distributed 

binomially with success probability θ
1
, and the remaining (π

2
 = 1-π

1
) proportion had a 

different success probability θ
2

.   The two component mixture model is formally given 

by  

f (x; θ
1
 , θ

2
 , π

1
, π

2
, n) = π

1
b(x; θ

1
,n) + π

2
b(x; θ

2
,n)                                 (4) 

Note that this model is simply the sum of two simple binomial distributions weighted by 

their respective proportions.  The number of individuals in the first component is m(π
1
), 

and similarly m(π
2
) is the number in the second component.  In general, any number of 

components is possible. The k component model is given by  

  (x; θ
r
,π

r
,n) = ∑ π

r
b(x; θ

r
,n),                                                 (5) f

r

k

=1

where 0 <  π
r
 < 1, ∑ π

r
 = 1,  0 <  θ

r
 < 1, for all r.  Within this model individual 

differences are described by differences in θ-values.  The main goal of this analysis is to 

estimate the different values of θ and their corresponding proportions in the population.  

By convention, the θ
r
-values are ordered such that θ

1
 <  θ

2
 < θ

3
 <...< θ

k
. 

r

k

=1

 It will be useful to refer to the mean and variance of Equation 5.  The mean of X 

is given by 

 µ = nπ
r
 θ

r
                                                              (6) 

r

k

=
∑

1

and the variance of X is given by 
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σ
2
 = ∑ π

r
[nθ

r
(1-θ

r
) + (nθ

r
)
2

] - µ
2
                                              (7) 

r

k

=1

Parameter estimation.  The binomial b(x; n, θ) has two parameters, n, the number 

of trials which as always known, and θ, which must be estimated.  A hat (^) over a 

parameter will denote an estimate of it throughout.  The maximum likelihood estimate of 

θ is   given by 

         θ̂  = (1/mn) x
i
,                                                                 (8) 

i

m

=
∑

1

and an estimate of the variance is  

       V      (θ̂   ) = [θ    (1-θ   ) ]/mn                                                            (9) 

with the estimated values replacing the parameters. 

With k values of θ and k-1 values of π in the k component mixture model 

(Equation 5, p. 28), there are 2k-1 independent parameters to estimate.  The equations 

necessary to find maximum likelihood parameter estimates are given by Everitt and Hand 

(1981).  Because they cannot be solved in closed form, iterative solutions must be 

obtained by using an Expectation Maximization (EM) algorithm.  Given the vector of 

responses and guesses of the parameter values, less than 15 iterations usually produce 

stable estimates.  As long as m > 2k - 1, as is the case here, identifiability is not a 

problem (Everitt & Hand, 1981). 

Tests and confidence intervals.  Blischke (1964) provides methods for computing 

estimates of the variances and covariances that permit hypothesis tests and confidence 

intervals.  Hypotheses regarding any pair of θ parameters can be tested, for example 
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z = (θ̂
1
 - θ̂

2
)/[ SE ^ (θ̂

 
)
2

 +    SE    ̂ (θ̂
2

)
2

]
1/2

                                               (10) 

where SE denotes a standard error, and z is approximately standard normal under the null 

hypothesis that θ
1
 = θ

2
.   Comparisons for π-values proceed similarly, using the 

appropriate covariance terms.  Using the same quantities, the point estimate of any 

parameter + 2 SE constructs an approximate 95% confidence interval. 

Model selection and assessment.  Model fit is generally improved with the 

addition of components.  Parsimony and utility, however, dictate simpler models.  

Deciding on the number of components is usually regarded as a problem of selection, 

because no estimation standard exists for making this determination.  To maximize both 

fit and simplicity, two indices were employed in model selection:  Pearson’s χ
2

 

goodness-of-fit statistic, and Variance Accounted For under the model (VAF).  These 

indices are not always in agreement, so some judgment must be used.  Fortunately,  these 

model assessment criteria provide intuitive gauges of model viability. 

Chi-squared.  Pearson’s goodness-of-fit χ
2

 statistic measures the correspondence 

between the observed data and expected values computed from parameter estimates.   

While small expected cell sizes usually prohibit the assignment of p-values to computed 

χ
2

’s, smaller χ
2
 values indicate better model fit.  In the case where the assumptions of 

the Pearson χ
2
 are met, the degrees of freedom are equal to the number of cells minus 

one minus the number of estimated parameters.  Degrees of freedom are provided 

throughout for all computed χ
2
’s. 
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The likelihood ratio χ
2
 , as defined by  

  L2 = 2 F̂ [ln( F̂ /F)],                                (11) ∑

where F̂  refers to observed cell frequencies, and F refers to the cell frequencies  

expected under the model, and the cells are the outcomes of the summed variable X as 

defined above (Hagenaars, 1990).  When the expected and observed frequencies are in 

close correspondence, L2 is small relative to its degrees of freedom (which are the same 

as the Pearson chi-squared statistic).  The likelihood ratio chi-square will be computed 

for two reasons.  Because the Pearson χ
2
 values cannot always be referenced to tabled 

values the likelihood ratio chi-squared statistic (L2) will be provided for comparison . 

When both statistics are approximately equal, they provide stronger evidence for the 

acceptance or rejection of a model.   

More importantly, the likelihood-ratio chi-squared statistic can be partitioned 

once the number of components (or latent-classes) has been determined (Hagenaars, 

1990; McCutcheon, 1987).  When restrictions are placed on a model's parameter values 

(e.g., θ
1
  = .50), degrees of freedom are recaptured and the chi-squared values increase.  

The increase in L2 for a "restricted model" is acceptable if it is small relative to the 

corresponding increase in degrees of freedom (i.e., if the additional variation is less than 

would be expected by chance) (McCutcheon, 1987).  In this fashion, parameter 

restrictions can be evaluated. 
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Variance Accounted For (VAF). The familiar sample variance, s
2

, estimates the 

population variance.  By replacing model parameters (π
r
, θ

r
) with their estimates in 

Equation 7 (p. 28), an estimate of the model variance σ
2

, can be computed.  The ratio σ̂

2
/s

2
 provides an estimate of the amount of variance accounted for by the model.  Better 

fitting models will account for a higher proportion of variance.  Occasionally, VAF is 

greater than 1 as a result of sampling error.   

Complex model estimates occasionally suggest simpler models.  For example, 

four component θ̂-values might appear as θ̂
1
=.52, θ̂

2
=.52, θ̂

3
=.71, θ̂

4
=.98 .  These  

models are summarily rejected in favor of simpler models, regardless of fit statistics. 

Classification.  Once performance has been modeled by a mixture of binomials 

distribution, it is natural to consider partitioning subjects into the model components to 

which they "belong".  In other words, for individuals with score X=x, which component 

is most likely to have produced that score?  By computing posterior probabilities based 

on a maximum likelihood estimate of the parameters θ
r
 , π

r
 , individuals can be 

assigned to the components from which their scores have the highest probability of 

having been drawn.  The probability that score X=x "came from" the rth component is 

given by 

                                                   π
r
 b(x; θ

r
, m)

 

 P(r|x)  =
  ___________________                                               (12) 

                                                ∑ π
o
 b(x; θ

o
, m) 

o=1

k
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where o = 1,2,...,r,...,k.  Parameter values are, in practice, replaced by their estimates.  

Component assignments on two or more tasks provide bivariate data useful in assessing 

between task correlations. 

Model assumptions.  The assumptions  of constant θ and independent trials which 

underlie the proposed model have been usefully employed in similar settings (Thomas & 

Lohaus, 1993; Thomas & Turner, 1991), and would seem to be appropriate here as well.  

At issue is not whether the assumptions have been violated, certainly they have.  At issue 

is whether they have been violated to the extent that they render the model useless.  It is 

argued here that they have not, and evidence to this effect will be presented below. 

Constant θ.  The idea that each subject has an equal probability of success on 

each trial has some intuitive appeal.  An individual with a given ability level might be 

expected to perform similarly on items of equal difficulty.  Egan (1979) argues that items 

of like complexity should be subject to the same mental processes, while items of 

differing complexity are likely to be subject to different processes.  The items of the 

mental rotation task are quite similar to one another because only a small number of 

similar objects and their mirror images are used. This implies that an equal probability 

assumption is not unreasonable.  However, there is some evidence that accuracy is lower 

for larger rotation angles (Berg, Hertzog, & Hunt, 1982; Just & Carpenter, 1985; 

Robertson & Palmer, 1983), and that foils are more difficult than identical items 

(Pellegrino & Kail, 1982).  As noted above, however, these differences may be small 

enough that they do not affect the model in any important way.   
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Ideally the equal probability assumption would be tested using multiple identical 

trials for each subject.  Unfortunately, replicates (i.e., multiple responses to the same item 

within the same test administration) were not obtained.  However, a rough estimate of the 

degree to which this assumption is violated can be obtained by calculating the proportion 

of correct responses for each item within each component (Thomas & Lohaus, 1993).  If 

the proportion of correct response estimates p̂’s) are constant within sampling  

error, confidence can be placed in the model’s descriptive power. 

Independence.  For the binomial or mixed binomial model to hold, each subject’s 

trials are assumed independent of his or her other trials.  Unfortunately, this issue is not 

easily decided.  Consider the subjects selected by Shepard and Metzler (1971), whose 

accuracy performance was nearly perfect.  In some sense their accuracy on early trials 

predicts their performance on later trials, suggesting a lack of independence.  However, 

this dependence is a functional dependence, not a stochastic one.  It is the latter that is of 

concern here.  Stochastic independence demands that the outcome of a trial is neither 

influenced by previous trials nor influences subsequent ones.  Again reflect on Shepard 

and Metzler’s (1971) subjects.  It seems unlikely that responses somehow affected each 

other in the absence of feedback, because high ability subjects would have no reason to 

refer to previous problems.  Lohman and Kyllonen (1983) cite research to support this 

contention.  Thomas and Lohaus (1993, p.145) provide the following analogy.  Imagine a 

bag of marbles each marked with a 1.  Choose a marble at random and define a success as 

selecting a marble with a 1 on it.  Repeat this process.  The probability of drawing a 

marble marked with a 1 is 1, but there is certainly no trial to trial dependence:  the 

outcome of trial n in no way affects the outcome of trial n+1.  The distribution of 
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accuracy scores demonstrated by Shepard and Metzler’s (1971) subjects could be viewed 

similarly.   

It is difficult to decide the issue of functional versus stochastic dependence 

reflectively.  Under an assumption of stochastic independence, performance on individual 

trials should be uncorrelated with one another.  In other words, within sampling error 

each trial Y
j
  should be uncorrelated with each other trial Y

l
 , l ≠ j , implying the 

correlation between l and j,  ρ
lj
  = 0, within each component.  For example, for the 

lowest performing group, ρ
Y1, Y2

 = ρ
Y1, Y3

 =  ... = ρ
Yn-1, Yn

  = 0. Under the null 

hypothesis ρ = 0,  r + 2 SE
r
, where SE

r
 = [1/(n-1)]

1/2
 should contain 95% of the 

probability mass of ρ = 0 (Huber, 1977).  The proportion of observed correlations for all 

of the trials outside this confidence interval can provide information about the validity of 

the independence assumption, and thus the amount of confidence to place in the model.  

But again, at issue is whether the general conclusions concerning the structure of the data 

are in jeopardy because the model’s assumptions have been violated.  Simulations by 

Thomas and Lohaus (1993) provide reason to believe that minor violations have little 

consequence. 

The model presented here attempts to provide insight into the nature of mental 

rotation performance.  It is argued that while the assumptions necessary for a binomial 

mixture are undoubtedly not met, they are perhaps not so flawed that the basic 

conceptualization of performance groups should be rejected. 
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Data analysis strategy.   The general strategy is quite simple.  Male and female 

subjects from both Penn State and Cooper-Union responded to 24 Vandenberg and Kuse 

(1978) type mental rotation items (Old) and 24 more complex items (New).  Half of the 

items required a "same" response and half a "different" response.  Individual trials for 

each subject’s "same" and "different" responses to the 48 mental rotations items were 

scored as either successes or failures (See Chapter II below for a more complete 

description of the dataset).  The number of correct items for each subject were summed 

for each of two mental rotation tasks (Old and New), yielding two summary scores 

between 0 and n, where n is the total number of within subject trials for each task.  

Estimates for the model were generated by an EM algorithm enabling models of 

increasing complexity up to four components to be fitted for males and females 

separately on each task.  Three measures of model fit were used to determine the most 

appropriate model. Estimates from the best fitting models were used to evaluate the 

hypotheses described below. 

A Model of Performance Change - The Bivariate Case  

The data pairs (x
i
, y

i
), i=1,...,m, are of focus.  Here, X and Y denote the two tasks of 

interest, either task 1 and task 2 at a fixed time or either task at time 1 and time 2.  The 

joint distribution of X and Y, (x, y) is naturally conceived as bivariate mixed binomial 

given that the marginal distributions (x) and  (y) are mixed binomial.  In general, the 

number of components in the bivariate model is the product of the number of components 

in the marginals.  Assuming that the number of components, k, is the same for both tasks 

(or across time), the bivariate model is given by  

f

f f
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f (x, y) = τ
ab

π
xa

 b
xa

 b
yb

                                               (13) 
a,b=1

k

∑

where a=1,...,k and b=1,...,k; b
xa

 b(x; θ
xa

, n
x

 ) and  b
yb

 b(y; θ
ya

, n
y

) are familiar 

binomial distributions for each task.  The π
xa

’s represent the univariate mixing 

proportions on task X, and the τ
ab

’s represent transition parameters or state change 

probabilities across tasks (or time).  These are conditional probabilities.  That is, τ
ab

 is 

the probability of "moving" to component b of the Y variable having been in component 

a of the X variable.  Note that τ
ab

 = 1 for all a.  For example, τ
12

 might denote the 

probability of to the high gruoop at time 2 given having been in the low group at time 1.    

More useful in this case than transitions from a component on X to a component on Y are 

the joint proportion estimates π̂
ab
  which represent the proportion of subjects  

≡

1

≡

b

k

=
∑

simultaneously in component a on X and b on Y.  For example, π̂
11

might  

represent the proportion of subjects in the low  performance group at times 1 and 2.  As 

with the univariate model, π 
ab

 = 1.  The full development of the models  
a,b=1

k

∑

for two and three component marginal distributions is presented in Appendix B.  

Parameter estimation.  Maximum likelihood estimated probabilities of success, 

θ̂
rs
 , and mixing proportions, π̂

rs
 , for the bivariate distributions are chosen from the  

best marginal models. State change parameter estimates are solved using iterative 

techniques.  Maximum likelihood estimates can then be used to test specific hypotheses.  
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Figure 1 graphically depicts transition parameter values under a no-learning hypothesis, 

testable under the model.  In this simple example, τ
11

, τ
22

, and τ
33

, are the proportions 

of subjects who, given having been in components 1, 2, or 3 remain there on the second 

assessment.  Note each value is 1.  Other, more interesting hypotheses can also be 

evaluated, for example it is possible to test whether performance decreases over time.  

Model assessment.  Model complexity is limited by the marginal models (i.e., 

two component marginal models imply four joint components).  However, simpler 

models are preferable.  The Pearson χ
2

 goodness-of-fit statistic was used as before to 

distinguish between bivariate models.  In general, lower values are better.  Considerations 

of parsimony dictate that reasonably fitting simpler models should be accepted in favor of 

more complex models.  Even though small cell sizes make it hazardous to provide p-

values, computed χ
2
’s that are small in relation to their degrees of freedom are preferred. 

Intertask correlations.  In the mixture setting, bivariate correlations have a very 

different interpretation than the usual Pearson r.  This model assumes local independence, 

a feature of latent class models in general which specifies that by conditioning on any 

marginal component (or latent-class) of one variable the scores of variables (X and Y) are 

independent.  For example, from Equation 13 (p.36) suppose that k=2, resulting in 4 

bivariate components.  Of these 4, focus on the component defined by a  = 1 and b = 1.  

The observations on X and Y from within this bivariate component (and within the 

remaining 3 components) are independent and thus uncorrelated.  In effect, the overall 

observed correlation between X and Y is the result of component membership correlation 

rather than an association between the two task variables within a component of X and a 
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component of Y.   This example does not imply that the two variables X and Y are not 

related in the mixture setting.  To the contrary, it suggests that the relationship is caused 

by an unobservable latent variable: that is the "class-like" structure of X and Y.  Both of 

which are the product of the same latent variable responsible for the functional 

dependence across trials. 

Summary of Model Approach 

 The approach outlined above attempts to find optimal univariate and bivariate 

mixtures of binomials models to describe individual differences in performance on two 

mental rotation tasks collected over two time periods.  The procedure separates 

individuals into performance groups in an effort to measure performance change.  The 

model parameter estimates can then be used to evaluate specific hypotheses concerning 

performance and performance change predicted by various theories in a way that 

traditional, normal-based statistics cannot. 

Connections to Other Models 

 This type of model can be viewed as a form of cluster analysis (McLachlan & 

Basford, 1988) or from an item response theory framework (Lord, 1965).  Its relation to 

item response theory will be developed in greater detail in the following chapters.  This 

model also shares many similarities with more general latent class analyses, where each 

mixture component is a latent or unobservable class of performers.  The kind most 

familiar to the social sciences are those developed in Lazarsfeld and Henry (1968) and 

McCutcheon (1987). 

 Thomas and Kail (1991) posited a conceptually similar mixture model to explain 

mental rotation latencies.  They regarded reaction times within a mixture of normals 
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distribution framework, and provided an X-linked genetic explanation to account for 

differences between performance groups.  Their model, like this one, recognizes that 

some subjects of both sexes perform at very high levels, while others perform quite 

poorly.  In past modeling studies of spatial ability, sex-differences seemed to be 

accounted for largely in the relative proportions of each sex within those performance 

groups; the same is expected here.  

 The bivariate binomial mixtures employed here are also similar in spirit to 

Markov chains (e.g., Brainerd, 1982).  Performance in a Markov model is viewed in 

terms of performance states similar to the performance components in the mixture model.  

Both parameterize transitions between those performance categories.  However, there are 

fundamental distinctions between the two as well.  State changes in Markov models are 

based on subjects’ rule-sampling.  It is difficult to see what rules could be successfully 

applied to the mental rotation task, especially when no feedback is provided during 

testing.   

Statement of Purpose 

Purpose 

 A model is developed to describe accuracy on mental rotations tasks, 

necessitating a fundamental change in the way performance and individual differences 

are traditionally viewed.  Having characterized performance from a modeling 

perspective, long-standing substantive questions regarding individual differences in 

performance and performance change over time can be addressed.  This study builds on 

the work of Thomas and Turner (1990), Turner (1991) and Thomas and Lohaus (1993).  

It will attempt to model individual differences in mental rotation performance, but it will 
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do so on two tasks of differing complexity to assess the effects of item difficulty on 

performance.  It will also attempt to describe spatial task performance change over time, 

providing more insight as to the nature of change than was possible using cross-sectional 

data (Thomas & Lohaus, 1993; Thomas & Turner, 1991).  While the model proposed 

here will not be applied to developmental data per se, because performance change over 

time is modeled, one natural extension of such a model would be to evaluate 

developmental phenomena such as the development of spatial skills. Past research 

(Turner, 1991) suggests that a mixed binomial model will successfully describe mental 

rotation performance.  Because there is some indication that a three component binomial 

mixture model will provide the best fit to the data, a three component bivariate binomial 

mixture model was developed (See Appendix B). 

Research Questions 

 At the most basic level, this research is guided by whether  the proposed model 

can adequately describe performance and offer insights into the nature of individual 

differences.  If so, issues related to theoretical predictions can be addressed, including 

whether or not the novel CAD curriculum provides a training advantage over traditional 

graphics course-work.  The following five inter-related questions guide the research: 

Performance Under the Model.   

1. How does performance change over time (within each treatment group) 

and how can that change be modeled? 

2. How does stimulus complexity affect performance (with respect to 

component structure, change over time, sex, and treatment group)? 

Strategy Use. 
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3. Can strategies be inferred from the proposed model structure? 

4. How is strategy use related to item complexity? 

5. Are there changes in strategy use over time? 

 

Design Overview  

 To answer these questions, first-year engineering students were trained in object 

rotations over the course of a 12 week semester using either a traditional or novel 

curriculum.  This novel treatment is intended to take advantage of the long-term, self-

guided practice of rotations with feedback on a CAD-based computer program (See 

Table 1 and Chapter II).  This intervention should be general enough that it will not force 

non-visual problem solvers to change their strategies, but allow them to refine their 

current ones.  As a result, it should promote more automatic and efficient processing in 

relation to natural strategies for all subjects (Kyllonen et al., 1984).  Assessment 

consisted of an adapted version of the Vandenberg and Kuse (1978) mental rotation task 

administered at the beginning and end of the academic semester.  The current mental 

rotation task used 24 items taken from the Vandenberg and Kuse (1978) task and 24 

items made of more complex shapes (See Appendix A).  

Hypotheses 

1. How does performance change over time (within each treatment group) 

and how can that change be modeled? 

Because the tasks used during training (engineering-related design objects) and 

testing (Shepard & Metzler, 1971 abstract shapes) vary to such a large degree, those 
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theories positing changes in procedural knowledge should predict performance change, 

while those espousing changes in declarative knowledge should not.  

 Olson and Bialystok’s model predicts that practice of the sort used here, which does 

not focus on the same objects for training and test, should prove ineffective.  There is not 

enough experience with the objects used at test to become familiar enough with their 

structural features.  As a result, the structural features should be unavailable, at least for 

initially poorly performing subjects, when attempting transformations like rotation. 

Piagetian theory, however, might predict otherwise. If development proceeds based 

on the internalization of actions which result in the formation of operations, then the same 

activities which produce change in childhood might be expected to be effective even in 

college students if the length of the intervention is sufficient in the same way that 

hypothetico-deductive reasoning might be taught at the college level.  The opportunity to 

manipulate object transformations and form internalized imitations based on perceived 

images from the computer screen should allow rotation to become internalized.  The most 

important aspects of this training is that it is subject controlled, thus allowing for exploration, 

manipulation (i.e., action) and imitation, and that it is long-term.  In sum, support is expected 

for Piaget’s theory but not for Olson and Bialystok’s theory. 

Performance change over time will not be identical for both the treatment groups, 

however.  Because Piaget's theory predicts that the type of interaction offered by the novel 

curriculum will allow for the formation of operations, it is hypothesized that the subjects who 

received the novel intervention will have state change proportions that reflect greater 

improvement than their traditional curriculum counterparts. Because Piaget's theory predicts 

that the type of interaction offered by the novel curriculum will allow for the formation of 
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operations, it is hypothesized that the subjects who received the novel intervention will have 

state change proportions that reflect greater improvement than their traditional curriculum 

counterparts.  This type of improvement is characterized in Figure 2, which shows consistent 

probabilities of success (θ's) and increasing proportions for the "high" level group (π 
2
 ). 

2. How does stimulus complexity affect performance (with respect to 

component structure and change over time)? 

 Previous research has demonstrated that stimulus complexity adversely affects 

accuracy (e.g., Yuille & Steiger, 1982).  Presumably, the increased processing demands 

associated with complex problems cause subjects to resort to less efficient strategies, 

which in turn lower accuracy.  If subjects’ strategies are well captured by θ-values in the 

mixture setting, then their strategy shifts will also be well described by the model.  For 

any fixed time, subjects whose performance decreases on the more complex task should 

shift from a higher component to a lower one.  In other words, the same components 

should be observed over both tasks, but the proportion of subjects in the highest 

performance groups on the standard task will be lower on the more complex task.  This 

hypothesized relationship will be observed in the state change probabilities.  Those 

probabilities will be highest for joint components which reflect performance declines.  

This relationship is expected to hold because strategy use is affected by complexity. 

Alternatively, as Kail and Pellegrino (1982) point out, a decrease in accuracy 

might simply be the result of a greater number of processing operations when stimuli 

become more complex.  If this is true, a very different set of results would be expected.  

Since each process would have a small likelihood of error, the compounding of the 

processes would imply that complex problems will be associated with lower probabilities 
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of correct response in general.  From an analysis of variance perspective, this might be 

expected.  In general, the average score is lower for more complex items pooled across 

subjects.  In this case, subjects are likely to remain in their relative groups, but the 

probabilities of success for all groups are likely to be lower for more complex items.  

This, however, is not anticipated.  Instead, it is hypothesized that the pooling of subjects 

is providing an inaccurate picture of the effects of stimulus complexity, and that a more 

abrupt state change (i.e. a change from one component to another across task) is more 

likely. 

Strategy Use. 

3. Can strategies be modeled? 

One of the most significant questions concerns the discovery of the different 

strategies used to solve mental rotation problems.  There is some research to indicate that 

there are multiple strategies used in solving this type of problem (Just & Carpenter, 1985; 

Sedon et al., 1984; Mislevy et al., 1991).  If there are multiple strategy groups, can the 

quantitative differences in model parameter estimates be linked to qualitative differences 

in processing? 

 The data used in the present study are not amenable to direct evaluation of the 

strategies subjects use.  However, some implications of strategy use might make 

themselves apparent.  Recall that the model posits that within each component, each item 

has the same probability of success associated with it.  Should a mixture of binomials 

model describe performance, then it is difficult to see how any single component (defined 

by a single probability of success value) could be the result of an amalgamation of 

strategy groups (i.e., that two different strategies would have the same probability of 
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success over all items).  With sufficient power, however, strategies with similar 

probability of success should be identifiable.  A similar model has already been shown 

capable of clarifying strategy differences by viewing them in terms of component groups 

(Thomas & Lohaus, 1993). 

 For instance, Turner (1991) found a significant proportion of subjects whose 

probability of success hovered around .50.  On a binary choice task like the one used 

here, this performance is at chance levels.  It is argued that this was exactly the strategy 

employed by these subjects, although other types of response bias should be excluded 

before this interpretation is accepted.  This example seems the most intuitively obvious 

instantiation of how the current model framework might be used to understand subjects’ 

strategies, but other hypotheses concerning subjects’ strategy use can also be 

investigated. 

 If the probabilities of success (θ-values) remain constant over the two difficulty 

levels of the task (e.g., differences between the standard items and the more complex 

items are characterized by π-value differences), then evidence that each component 

represents a strategy group will have been found.  Each strategy is assumed to have a 

constant probability of success associated with it, regardless of item complexity.  This is 

similar to the way rule use in other tasks is conceptualized in that item complexity will 

only affect subjects’ strategy choice.  While the probability of success values (θ-values) 

are expected to remain constant over different versions of the test, the mixing proportions 

(π-values) should change, indicating that subjects’ strategies are dependent on item 

complexity.  This assumption is doubtlessly incorrect, but hopefully not importantly so.  
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Lohman and Kyllonen (1983) provide evidence in support of the hypothesized effect of 

item difficulty on strategy use. 

 Moreover, differences in general aptitudes in visual and verbal modes of 

processing (Kyllonen, Lohman, & Snow, 1981, cited in Lohman and Kyllonen, 1983) 

have been implicated in strategy differences.  These authors suggest that visualizers are 

more likely to use rotation strategies to solve mental rotation problems, while verbalizers 

are more likely to use piecemeal rotations or less efficient verbal codes.  This finding 

implies that component groups should be distinguishable based on verbal and 

mathematical aptitude and achievement test scores like the SAT.  SAT, cumulative GPA's  

and college placement scores were available for Penn State subjects.  It is hypothesized 

that the highest performing component groups will have the highest math-related scores, 

while one or both of the lower performance groups will have superior verbal-related 

scores.  Finding differences between component groups on these achievement scores also 

adds some validity to the components, indicating that individuals within the same 

component groups are, in fact, similar to one another and different from individuals in 

other component groups. 

 4. How is strategy use related to complexity? 

 As Linn and Petersen (1985) point out, some of the differences in accuracy scores 

over different versions of mental rotation tasks (e.g., PMA space versus Shepard & 

Metzler objects) are thought to be caused by the failure of less able subjects to implement 

the same strategies on difficult items that they apply to simple items.  Lohman and 

Kyllonen (1983) provide additional support for this hypothesis, noting that strategy 

changes are related to item characteristics.  It has been suggested that stimulus 
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complexity can reduce imaging efficiency and exceed short-term memory capacities in 

less proficient subjects. For example, Carpenter and Just (1978; Just & Carpenter, 1985) 

outlined an account of mental rotation that describes different mental rotation strategies.  

One of these strategies is the part-by-part rotation of figures.  They argue that more 

complex figures will require longer "rotation" times because several rotations are 

required.  Similar findings were reported by Bethel-Fox and Shepard (1988).  This idea 

also receives some support from Kail et al. (1979) who found that a significant sub-

sample of females had much longer rotation times than males.  Tapley and Bryden (1977) 

suggest that when subjects are forced (due to the task demands) to use piece-by-piece 

strategies, individuals may have difficulty keeping the parts of an object in proper 

relationship to one another.  Considering the relationship between rotation time and 

accuracy, it follows that more complex stimuli will be judged less accurately.   Linn and 

Petersen (1985) note that tasks requiring more analytic strategies, such as a part-by-part 

rotation, show minimal sex-differences.  Additionally, in tasks which use relatively 

simple objects, no sex-differences in strategy use are detected (Kail et al., 1984).  If 

females are more likely than males to adopt a part-by-part strategy as item complexity 

increases, as this evidence suggests, then one would hypothesize that sex-differences in 

accuracy will increase with corresponding increases in task complexity.  This hypothesis 

will be investigated with reference to the univariate analyses.  It is hypothesized that the 

performance of both sexes will change similarly within component groups.  In other 

words, the univariate component structure will look similar at both time points for both 

men and women. 
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This type of hypothesis is easily tested under the current model.  Specifically, an 

increase in sex-differences due to stimulus complexity would be observed by comparing 

male and female π-values for the standard and complex items.  A greater relative 

decrease in the π-value for the highest performing group and a corresponding increase in 

the π-value(s) for the lower performing group(s) of women across the two tasks would 

provide evidence for this effect.  The relevant transition parameters should also be 

revealing. 

The current hypothesis accounts for the apparently sex-related complexity effect 

in terms of a function of general performance level.  Because a greater proportion of 

males are in the highest performing levels this effect appears to be a between-sex 

difference when mean-based analyses are used.  If stimulus complexity affects poor 

performers more than good performers regardless of sex, then a different (but still 

testable under the current model) pattern in the parameter estimates will be observed.  

One potential instantiation is consistent θ-values over standard and complex items, but 

lower proportions of subjects in the highest performance group, regardless of sex.  

 In summary, subjects’ θ-values will decrease (from a higher component to a 

lower one) as task difficulty increases, and increase (from one component to a higher 

one) with practice.  If probability of success values (θ-values) remain constant across 

task and proportion estimates (π-values) change over task, one explanation for this result 

would be that subjects who perform at high levels on an easier task are unable (due to 

processing demands) to implement the same strategies on more difficult items. 

Presumably, those subjects performing at uniformly high levels on both versions of the 



 50 

task are able to use the same strategy regardless of what item is presented.  In this study, 

each strategy group is expected to be defined by a constant θ-value.  

5. Are there changes in strategy use over time? 

 Because performance change on other spatial tasks was found to be the result of 

changes in component membership rather than incremental changes in probabilities of 

success (θ -values), the same is predicted here.  If strategy use defines component 

performance, then changes in strategy use will also be seen as a result of changes in 

component membership.  It is difficult to conceive of strategy changes that would be 

manifested in small shifts in θ-values.  If the CAD-based intervention allows for 

improvements in procedural knowledge that affect strategy use, performance will 

improve abruptly on both versions of the mental rotation task, as manifested by changes 

in π-values.  

If the current intervention is too visually laden for subjects in the lower performance 

group(s) (who may be using verbal rather than visual strategies), then one would expect 

to see good performers get better and poor performers get worse (i.e., more extreme θ-

values over time). Model parameters consistent with this hypothesis are provided in 

Figure 3.  The groups of performers defined by strategy use at pretest and identified by 

the mixture model should maintain their members, while each group is affected (either 

positively or negatively) by the treatment. 

 Finally, this study should also provide suggestions for directions in future 

research which address important questions concerning the relationship between spatial 

abilities, strategy use, and sex-differences in spatial competence. 
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CHAPTER II 

 

Method 

 

 To answer the research questions posed in Chapter I, an existing dataset was 

analyzed.  Data collection procedures from a curriculum evaluation in The Pennsylvania 

State University’s College of Engineering are summarized below.  Note that while the 

focus of the curriculum evaluation was on pedagogic technique, this study proposes to 

evaluate a model for performance and performance change and relate model-based 

findings to psychological theory.  As such, the intervention will only be briefly 

summarized. 

Participants 

 First-year engineering students (n=556), enrolled in design courses at The 

Pennsylvania State University and The Cooper-Union College, were provided with either 

a traditional or novel engineering graphics curriculum.  Table 1 summarizes the 

composition of the participants.  The sample was comprised of 409 men and 147 women, 

of whom 393 were attending the Pennsylvania State University, and 163 were attending 

the Cooper-Union College.  Because the data were gathered from naturally occurring 

course sections, no effort was made to control for the sex, age, or institutional affiliation 

of the students.  In addition, not all subjects were available for testing at both time points 

in these naturally occurring classroom groups.  As such, subjects available only at pretest 

were included in all univariate analyses, as were subjects available only at posttest.  

Those subjects who provided data at both pretest and posttest (represented by the 
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overlapping portions of the ellipses in Table 1) provided suitable data for the bivariate 

analyses. 

 Because treatment group and university affiliation were confounded, basic 

descriptions of the two populations from which the subjects were sampled are provided.   

Average admission SAT scores and middle 50% range SAT scores are provided for both 

Penn State University and Cooper-Union College first-year student populations in Table 

2, demonstrating the potentially higher ability level of the Cooper-Union sample subjects.  

One concern is that performance differences at post-test are confounded because the two 

treatment groups were not identical at pretest.  It is argued that because the Cooper-Union 

students were, in general, academically superior to their Penn State counterparts, 

performance differences would be expected to favor the Cooper-Union subjects in the 

event that the curriculum intervention was unsuccessful (e.g., a greater proportion of 

Cooper-Union subjects would be expected to be in the component associated with high-

level performance at both time 1 and time 2 if there is no advantage to the new 

curriculum).  However, if the novel curriculum proves more effective (in the sense that a 

significant proportion of subjects change from components associated with lower 

performance to ones associated with higher performance), it is argued that such a change 

was in spite of the advantage that the Cooper-Union subjects appeared to have as the 

result of the college's potentially higher selectivity. 

Tasks 

To evaluate the effectiveness of the curriculum change, a modified version of the 

Vandenberg and Kuse (1978) mental rotation task was used.  The adapted version 

contained 12 items: six taken from the Vandenberg and Kuse (1978) version of the 
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Shepard and Metzler (1974) mental rotation task and six made from more complex three-

dimensional structures (See Appendix A).  Each item contained four comparisons to a 

target figure.  Figures appeared within a 2.5 cm (1 in.) circle, reproduced so that there 

were five items on each line, with the target item always presented first. Subjects were 

asked to judge whether the comparison items were the same as or different from the 

target items.  Comparisons were presented four items to a page on three pages. 

 One significant change in the Vandenberg and Kuse (1978) mental rotations test 

format was made.   Each item required the comparison of four figures to a target figure.  

Of every four comparisons, two and only two figures were identical to the target item 

(albeit rotated).  As a consequence, solution strategies not related to spatial ability are 

possible.  Once a subject has determined which two items of the set of four were the 

same as the target item, the remaining two need not be rotated because they can be 

logically eliminated as potential matches to the target figure.  In effect, once any three 

items of the four have been solved, the fourth is logically, as well as spatially determined.   

The mental rotation tasks used here were adapted so that half of the items overall 

were the same as and half different from the target stimulus, but each block of four 

contained a random number of "same" items.   As a result, each block contained from 0 to 

4 items which required a "same" response, and there were approximately an equal 

number of each of the five possible block types.  Consequently, subjects were forced to 

solve each of the four items individually. 

The Vandenberg and Kuse (1978) paper and pencil task is typically administered 

with a strict time limit in an attempt to induce rotational strategy use.  Overall scores are 

then computed from the number of items answered correctly of those attempted, minus a 
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penalty factor for guessing.  This scoring scheme was not adopted in the present study for 

three reasons.  First, because subjects do not attempt the same number of items, 

differences between protocols in the number of items attempted make interpretations 

difficult.  Also, because the model proposed above requires the same number of items for 

each subject, this scoring system is a priori inappropriate.  Second, researchers have 

found that some of the male superiority in accuracy is caused by a greater number of 

errors of omission by females (Goldstein, Haldane, & Mitchell, 1990; Stumpf, 1993).  It 

can also be argued that a time limit changes the focus from accuracy to speeded accuracy, 

which is a different skill entirely (Lohman, 1979, cited in Eliot, 1987; McGee, 1979).  

Both problems were reduced by allowing subjects enough time to complete all items.  

Finally, the model presented above is a stochastic one, and as such, can account for 

guessing responses, obviating the need for a correction factor.  Items were scored for the 

number of correct "same" and "different" judgments from 0 to 24 for each set of items, 

standard and complex. 

In addition to mental rotation performance, 10 measures of achievement were 

also collected from Penn State subjects.  SAT Math and Verbal scores, three college 

placement tests in mathematics, one in chemistry, and one in English, and high school 

and college cumulative GPA's were gathered because performance on these measures has 

been related to spatial ability. 

Procedure 

Intervention 

 The curriculum change employing the novel CAD program attempted to 

incorporate the findings of previous training studies into a comprehensive procedure.  
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Usually, a relatively crude wire-frame CAD program or manual drawing instruction is 

used in teaching the design courses.  Improvement in spatial visualization skill was 

attempted by capitalizing on the ability of a CAD-based solid-modeling computer 

program (Silver Screen) to provide constant feedback while demonstrating three-

dimensional rotations in motion on a two-dimensional screen.   In addition to rotations, 

the software has the ability to show sections of solid objects on screen and provide 

multiple views of the objects simultaneously.  Moreover, the experimental opportunity 

was provided for a full semester, allowing for long-term practice.  Each section of the 

Engineering Graphics 50 course  spent approximately 22% of class time (approximately 

8.25 hours) interacting with the novel software. 

Design 

A quasi-experimental design was used to evaluate the usefulness of the solid 

modeling technique as a training method.  Students from Cooper-Union College were 

given either standard wire-frame CAD software or manual drawing instruction, providing 

a contrast group (traditional course), while Penn State students were given the solid-

modeling-based instruction (solid-modeling).  The courses at the two universities were 

similar in almost every other regard.  A pre-test was administered to all students within 

the first two weeks of the semester, prior to any in-depth study of engineering design.  

The pre-test consisted of the 12-item mental rotation task described above.  The post-test, 

a second administration of the mental rotation task, was conducted within the last two 

weeks of the semester after the graphics curriculum had been presented.  Subjects' 

performance was tracked over time using Student I.D. numbers when given.  

Unfortunately, a large proportion of subjects chose not to provide this information.  As 
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such, many of the subjects were tested on both occasions, yet their performance could not 

be evaluated over time.  No other demographic data were collected. 

Assessment 

Data were collected over the course of three semesters from subjects in classroom 

groups of 25 to 35 students for both  assessments.  Subjects completed the tasks without a 

time limit.  This was done for three reasons:  (1) to ensure that nearly all subjects would 

complete the task (2) so that accuracy judgments would not be confounded by response 

time differences, and (3) because spatial visualization problems that naturally occur in the 

engineering field seldom require timed rotation, any attempt to improve or measure 

performance should be as similar as possible to the skills used in engineering. 

Response Measures: Reaction Time Versus Accuracy   

 Both reaction time and accuracy scores are commonly used response measures 

for assessing mental rotation performance (Linn & Petersen, 1985). There is evidence to 

suggest that reaction time judgments and accuracy judgments measure different aspects 

of mental rotation skill.  It is argued below that accuracy measurements are superior in 

the present context. 

It is possible that a speed-accuracy trade-off is responsible for some of the sex-

differences typically found when latencies are measured.  However, Cooper (1982), 

Lohman (1986) and Tapley and Bryden (1977) have all provided evidence that this is 

unlikely because speed and accuracy are correlated.  Evidence suggesting that both 

accuracy and speed of rotation are dependent on representation quality supports the 

notion that both measures characterize ability (Kail, Stevenson & Black, 1984; Lohman, 

1986).  
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 It has also been shown that while speed and accuracy of rotation are correlated, 

latencies will not measure analog rotation processes in subjects who use non-rotational 

strategies. (Tapley & Bryden, 1977).  Researchers using reaction times to measure 

performance on mental rotation tasks often infer that larger angular deviations require 

more time to rotate.  Because reaction time for subjects using non-rotational strategies 

cannot be viewed in the same way, reaction time may not be as good a measure of ability 

as accuracy. 

In studies where speed and accuracy were not related, accuracy was found to be a 

superior measure of ability.  Egan (1978, cited in Cooper and Mumaw, 1985; 1979) 

detected independent factors for accuracy and latency scores, and found that accuracy 

scores were more predictive of success in aviation than reaction times were.  Lohman 

(1988) has found that individual differences in the speed with which problems are solved 

does not predict accuracy on complex problems.  Merriman, Keating, and List (1985) 

provide psychometric support for preferring accuracy judgments in measures of spatial 

ability as well.  In sum, performance models based on response times from a subject pool 

restricted to those who perform almost without errors (e.g., Shepard and Metzler, 1971) 

can not provide a generalizable account of performance (Lohman & Kyllonen, 1983); 

accuracy must be assessed.  

A final consideration is the practical advantage to using accuracy scores.  

Reaction time studies can only use data from "same" comparisons.  Because there is no 

rotation that can bring different items into congruence, response latencies for these items 

are difficult to interpret in terms of mental rotation.  In effect, half of the data are 

unavailable to analysis.   
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Some of the objections leveled at latency measures could be directed at studies 

using accuracy judgments, especially because accuracy does not imply that any mental 

rotation has taken place.  The focus of this study, however, is not whether an analog 

imaging process occurs as much as that an important spatial ability is being measured.  

Lohman (1979, cited in Cooper & Mumaw, 1985; 1986) points out that superior accuracy 

in rotation of complex objects is, in part, what it means to have superior spatial ability. 
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CHAPTER III 

 

Data Description 

 

 The data for this study were gathered from two groups, each provided with a 

different curriculum in their first year engineering courses.  Participants from the 

Pennsylvania State University had training which involved special emphasis on rotation 

skills, while participants from The Cooper-Union College received no such emphasis.  

Subjects from both groups responded to 24 Shepard and Metzler (1971) mental rotation 

objects and 24 more complex objects of the same type, denoted Old and New items 

respectively (see Appendix A).  Correct responses to the old and new items involved 

either a "same" or "different" response to a target.   To measure the effect of the 

curriculum difference, pre- and post-test data were gathered.  In addition, the sex of the 

subject was recorded.    

These five variables (curriculum - Penn State/Cooper-Union, Sex - Male/Female, 

Item type - Old/New, Item status - Same/Different, and Time - 1/2), each with two levels, 

provide 32 basic-level groups (item-sets) used in the modeling procedure below.  

Curriculum (University) and sex are between subjects variables, while Item type, Item 

status, and Time are within subjects variables.  Each of these samples is referred to using 

the short-hand notation outlined in Table 3.  Within each of the 32 basic-level groups, the 

number of correct responses was summed for each individual as described above (p. 26; 

i.e., an observation on X),  to provide a score indicating the total number of correct 
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responses for that individual on each subset of items (e.g., old-same items at time 1, old-

different items at time 1, etc.). 

To provide an overall sense of the data, descriptive statistics are provided below 

for each of the 32 samples.  That is, for each sex and curriculum (university) group Table 

4 indicates the mean number of items correct, sample size, variance, and range of 

responses for each item type, item status, and test time.   The possible range of responses 

(i.e., the number of items attempted) is not equal for all of the 32 basic-level groups, and 

as such the means and ranges presented in Table 4 are directly comparable only in the 

cases where the number of items are equal.  Recall that while half of the items were old 

and half new, and half were the same and half different, item type and item status were 

not evenly counterbalanced.  Of the old items,  15 were different from the target items, 

and nine were the same.  Conversely, of the new items, 15 were the same as the target 

item, and nine were different. The overall model interpretation, however, is not affected 

by the number of trials per task. 

More revealing than the descriptive statistics, frequency histograms of the 

number of items correct are provided for four of the 32 basic-level groups in Figures 4-7.  

These particular figures were chosen only because they are representative of the 32 basic-

level histograms in all important respects.  In addition to the observed frequencies 

provided in the figures, a normal curve is shown.  Estimates for the normal were obtained 

by substituting sample means and variances for their corresponding population values.  

Best fitting two and three component binomial mixture estimates are also provided for 

comparison.  The mixture estimates will be considered in more detail in Chapter IV.   
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Most conventional analyses rely heavily on two assumptions:  normality and the 

idea  that group differences are manifested as additive differences.  These issues are 

considered in turn.   

Figures 4-7 suggest that these data were not sampled from a unimodal population 

like the normal.  In all cases, the mixture models seem to preserve the features of the data 

more adequately.  Chi-squared goodness-of-fit test statistics are almost always lower for 

the two component binomial mixture model, indicating a better fit relative to the normal.  

Even in cases where normality cannot be rejected on the basis of chi-squared values 

alone, the histograms demonstrate the clear superiority of the mixed binomial model.  

Goodness-of-fit statistics are provided for each of the three models presented in Figures 

4-7 and the other 28 basic-level performance groups in Appendix C. 

One might, at this point, argue that t-tests are robust to departures from normality, 

and that an argument against conventional analyses on those grounds is unwarranted.  In 

many cases this is true, however, the problems with conventional analyses are more 

serious than the failure of the data to have come from normal distributions. In the case of 

sex-differences, a t-test procedure assumes that male and female distributions are 

identically normally distributed, except that one of the distributions is shifted to one side.   

Figure 8 graphically illustrates the t-test model usually applied to the sex-differences 

found in spatial abilities.  Clearly, if the female performance distribution in Figure 8 is 

shifted to the right, it is identical to the male performance distribution, and consequently 

an additive shift model is appropriate.  It was argued earlier that this type of model is 

inappropriate for the data under investigation because shift-models do not adequately 

describe differences between performance groups for the data presented here.  The data 
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presented in Figure 9 show Penn State Females' performance on New items that required 

a "different" response at time 1 and time 2, with the time 2 data scaled to account for the 

difference in sample sizes.  The mean number of items correct increased over time from 

6.1 to 7.0.  A shift-model, such as a t-test, indicates that, within sampling error, the 

observed frequency distribution at time 2 is identical to the frequency distribution at time 

1 when it has been shifted to the right by .9 items correct.  It is difficult to see, however, 

what constant could be added to time 1 performance in Figure 6 that would make the two 

frequency distributions "line-up."  In fact, as Thomas and Lohaus (1993) have pointed 

out, any time observations are bounded on some interval, a shift model is likely to fail, 

simply because scores cannot be shifted past the boundaries of the maximum and 

minimum number correct.  In other words, t-tests and models like it, which account for 

mean differences in terms of distributional shifts require unbounded population 

distributions.  Consequently, they fail when the measurement system prohibits this.  In 

addition, the very use of a mean in describing a distribution implies that a measure of 

central tendency captures some important characteristic of the data.  In the case of the 

data presented in Figure 9, this spirit seems to have been violated.  The analysis of these 

data from a binomial mixture model perspective is considered next.  
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CHAPTER IV 

 

Univariate Binomial Mixture Analyses 

 

 The overall strategy is to fit the data to binomial mixtures with one, two, three, 

and four components.  Model estimates generated by the best-fitting, simplest models are 

compared across different samples and used to isolate variables related to individual 

differences in task performance.  Finally, the assumptions underlying binomial mixture 

models are evaluated. 

Basic-level Analyses 

 Results of the one, two, three, and four component mixed binomial models fitted 

to each Curriculum x Sex x Item type x Item status x Time grouping are presented in 

Appendix D.  The best-fitting, simplest and therefore preferred model estimates and fit 

indices for each group are summarized in Tables 5 through 8.  Parameter estimates and 

their standard errors were obtained as described above. Sorting subjects according to each 

of these five independent variables represents the most basic-level of partitioning 

available.  The resulting sets of items are referred to as basic-level item-sets, so for 

example, the n = 93 Penn State Females' performance on Old items requiring a "Same" 

response at time 1 (PFOS1(93)) represents a basic-level group.  Summary-level analyses, 

which are  composed by collapsing across independent variables, will be considered 

separately. 

 A few features of Tables 5 to 8 are notable.  First, the minimum VAF was 85.3%, 

while the average was 92.4%, indicating a high correspondence between the model and 
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the data.  In comparison to measures of explained variance usually seen in regression or 

analysis of variance settings, a model explaining over 92% of the variance is substantial.  

Equally remarkable is the stability of the model structure across the different groups:  in 

the majority of cases, two component models provide the best fit.  For three of the basic-

level groups a one-component model provides satisfactory fit, however these represent the 

groups with the smallest sample sizes (CFOS1(28), CFNS1(28), and CFOS2(27)) and 

therefore the lowest power to detect more than one group.  Without exception, the four 

component models were rejected.  Although there are a few cases where a three 

component model does appear to agree best with the data, under closer inspection, the 

lowest performing component of these three component models seems to pick up only a 

very few subjects, usually 1 or 2 out of a sample of between 75 and 258 individuals.  

Recall that the π-estimates reflect the proportion of individuals within a component.  

When a three component model best fits the data, typically the  value is quite low, as can 

be seen in  Table 5.  In fact, for most estimates, the confidence interval of   includes 0.  

For example, the three component model for Penn State Females' performance on Old-

different items at Time 1 has =  0.011.   The interval of π  +

1π̂

1π̂ 1ˆ  2 SE( )  includes 0.  

When the outliers that these parameter estimates measure are removed and the models re-

fit, the two component estimates invariably fit as well as the actual three component 

models, and the estimates are practically identical to those of the original two component 

model.  This can also be seen in the fact that the VAF index is fairly high for the two 

component model, and does not increase substantially with the addition of a third 

component.   

1π̂
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Rarely does VAF substantially increase with the addition of a third component, 

even though one or both of the  χ
2
 test statistics is often significantly reduced.  Overall, 

two components seem to model the data well.  The large two component χ
2
 values are 

partly indicative of just how much power these tests have here, especially when sample 

sizes are large.  When the three component models fit best according to a χ
2
 criterion, 

often the values are below their expected values, suggesting that the third component is 

simply picking up a few subjects whose scores are responsible for the high χ
2
 values in 

the 2 component model, and that the two-component model fits almost all of the data quite 

well.  It is often the case that just a few cells of the two component model are responsible 

for high χ
2
 values, while the model captures the general spirit of the data.  For example, 

consider Penn State Females' performance on Old-Different items at Time 1 

(PFOD1(93)).  A three component model seems to provide a better fit according to VAF 

and both χ
2
 statistics than the two component model.  Table 8 shows the individual cell 

χ
2
 contributions for the two component model, indicating that 1 subject is responsible for 

nearly all of the computed χ
2
 value.  Eliminating that one subject's score results in a χ

2
 

value that fails to reject the model at the α = 0.05 level.  As also shown in Table 9, each of 

the χ
2
 's are unrestricted.  Without pooling adjacent cells some of the expected values fall 

below 5, also potentially increasing the observed χ
2
 values. This information supports the 

high correspondence between the models and the data demonstrated in Figures 4-7.  For 

these reasons, two component models were chosen for all of the basic-level item-sets.  
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Figures 10 and 11 graphically show the probability of success (θ) estimates and 

proportion (π) estimates, respectively for each of the 32 basic-level two component 

models. 

In Figure 10, the front row of bars indicates probability of success estimates (θ) 

for the lower performing group, while the back row of bars shows probability of success 

estimates (θ) for the higher performing group. While this figure shows that the success 

estimates fluctuate across each of the 32 item-sets, it does not appear that there are any 

systematic fluctuations in the success parameters for either the high- or low-level 

estimates.  The fluctuations are more pronounced for the lower performance groups' 

estimates, as might be expected given that 's closest to 0.50 have the largest standard 

errors.  Figure 11 presents the proportion estimates for each of the 32 basic-level item-

sets.  In contrast, these estimates do seem to change more systematically across item-set.  

For example, within each of the Sex x University samples, the lower performing group 

has the largest proportion of individuals for new-same items at either time 1 or time 2, and 

for two groups the two largest "low" proportions are for new-same items regardless of 

time.  Similarly, old-same items appear to have smaller proportions of low-level 

performers at both time 1 and time 2 for 3 of the four Sex x University samples, while old-

same items have smaller proportions of low-level performers at time 2 for the fourth 

group.  In general, it also appears that there were more high-level performers at time 2 

than time 1 across all of the task conditions. 

θ̂

Probability of Success Estimates, θ .  Of preliminary interest is whether the 

probability of success parameters are significantly different from one another for different 

ˆ
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item-sets given that the number of components is the same.  It was hypothesized earlier 

that the same component groups would be found across old and new as well as same and 

different test item-sets and for both sexes and curriculum (university) populations across 

time.  For example, this hypothesis indicates that all of  the θ
1
 parameters are the same 

within sampling error.  This is, however, an idealized hypothesis.  The probability of 

success parameters are almost certainly different, but perhaps at least similar to one 

another. 

In order to assess the consistency of the probabilities of success, approximate z-

tests were conducted within component groups for each Sex x University sample. Of 

interest is consistency of the item-type x item status x time θ 's (e.g., Old Same items at 

Time 1, Old Same items at Time 2, etc.) within the 4 independent Sex x University groups 

(e.g., Penn State Females, Penn State Males, etc.).  It would be natural to expect that 

probabilities of success would be more similar to each other within each group than they 

would be across groups. Recall that approximate z

ˆ

-tests can be constructed to compare 

parameters given the parameter estimates and their standard errors (see Equation 10, p.29, 

and Table 5).  With 8 groups there are  

  = 28 pairs of estimates within each 

component.  Under the null hypothesis that all of the parameters are equal, 5% of the 28 

(or 1.4) z

8
2

 



-scores would be expected to be greater than 2 by chance. The best-fitting two 

component model estimates for each Sex x University were compared against each other 

within each Sex x University sample (See Appendix E).  Of the 224 z-tests conducted for 

these 4 groups, 101 (or roughly 45%) were significant at the α = 0.05 level, indicating that 

perhaps the probability of success estimates were not uniform within sampling error.  It 
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will be argued later, however, that this does not necessarily indicate the groups are 

markedly or importantly different from one another. The lack of similarity between 

probabilities of success as measured by the z-tests appears to be due, in part, to the tests' 

relative power.  From Appendix E it can be seen that the number of significant z-scores is 

highly related to each Sex x University group's sample size in that Penn State Male's have 

the largest sample size and the highest number of significant differences, while the 

Cooper-Union Female's have the least number of significant z-scores and the lowest 

sample size.   

It might also be reasonably expected that the parameter estimates would be similar 

within time and item type for all of the Sex x University samples.  For example, the Old-

same items at time 1 should be similar for Penn State Females, Penn State Males, Cooper-

Union Females, and Cooper-Union Males (See Appendix F). Consistent with the within 

Sex x University sample z-tests, 42 of the 96 z-tests were significantly different, 

indicating that they were not alike.  Again, given the power involved it is remarkable how 

similar they are.   

To give an overall sense of the probability of success estimates,  z-tests conducted 

on the 

  = 496 possible lower performance group pairs and the 496 higher 

performance group pairs were significantly different at a much higher rate than the 5% 

expected due to chance.  For the lower performing group, 232 (or 47%) of the z-scores 

were significant, while for the higher performing group, 221 (or 45%) were significant.  It 

is clear that all θ-estimates are not the same, as had been hypothesized.  It does not 

appear, however, that there are many systematic differences with respect the independent 

32
2
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variables as seen in Figure 10, and this is the most important point.  In general, it appears 

that the lower component θ-values fluctuate more than expected, but not systematically. 

To illustrate this point, imagine that the same two component population model 

strictly holds for each of the 32 basic-level groups, and that the two types of performers 

are described by the probability of success parameters θ
1
  and θ

2
 .   Under the 

assumption that the θ
r
 (r = 1, 2) are approximately normal in distribution and each of 

the 32 basic-level groups have common θ
r
 , then the estimates of θ

r
 should all fall 

within +

ˆ

 2 standard errors of θ
r
 .  A histogram of the 's should therefore show two 

bell-shaped "humps", with each "hump" centered on θ
r
 .  With sample sizes varying from 

27 to 258 and the number of trials either 9 or 15, the computation of the standard error is 

problematic.  One rough method of assessing this is to use the average 
r
  to provide 

estimates of the population values for θ
r

, and the average of the estimated standard errors 

for  θ
r
  to estimate the population standard error.  Figure 12 provides a histogram of the 

32  θ
1
 and  

2
 values and identifies the contribution of each basic-level group.  The 

curves shown in Figure 12 denote the expected distributions of the θ ’s under the 

assumption that the θ ’s are approximately normally distributed.  While the θ 's are more 

spread out than would be expected, they do fall into two clusters, indicating that each of 

the 
r
 do seem to represent similar if not common θ

r
 values. 

θ̂

θ̂

ˆ

ˆ

θ̂

θ̂

ˆ

ˆ ˆ
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Figure 10 suggests that while the 
r
 vary more than anticipated, they do not do 

so in any systematic fashion.  Figure 12 allows this hypothesis to be investigated further.  

If there is any systematic variation in the 
r

 caused by the different levels of the five 

independent variables, then it should be the case that the probability of success estimates 

associated with those variables will fall above or below the mean  
r
 value more than 

would be expected by chance.  For example, if male θ
r
 values are higher than female θ

r
 

values, then a binomial test should show that the male θ
r

's fall above the mean   value 

significantly more than 50% of the time.  Likewise, female 
r
 values would be expected 

to fall below the mean significantly more than 50% of the time.  Binomial tests were 

conducted for each of the five independent variables:  Curriculum (University), Sex, Item-

type, Item-status, and Time.  In all cases, p > .05 indicating that there were no systematic 

influences acting on the θ ̂ 's. 

θ̂

θ̂

θ̂

ˆ θ̂

θ̂

This evidence suggests it reasonable to view performance from a common model 

structure, but that estimates fluctuate. As a further test of whether a common probability 

of success vector (i.e., θ
1
 = 0.6283 and θ

2
 = 0.9336) underlies performance across all 32 

basic-level item-sets, the two component models were refit with a common, fixed 

probability of success vector (i.e., θ
1
 and θ

2
 were both fixed) while the proportion 

parameters ( π
1
 and π

2
 ) were both free to fluctuate.  Because it was hypothesized that 

performance differences across item-type and time would be seen as differences in 
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proportion values, these parameters were not fixed across models. The common θ
r
  

estimates were obtained from the overall two component model solution.  Results indicate 

that, while the fit as measured by χ
2
 , L

2
, or VAF was reduced in many cases, the models 

did fit reasonably well overall.  In order to assess the acceptability of the model 

restrictions, the likelihood ratio chi-square and its degrees of freedom were partitioned as 

described in Chapter I.  When the two θ
r
 estimates are fixed, two degrees of freedom are 

gained in the restricted model.  If the increase in L
2

 due to the restrictions of the θ
r
  is 

small with respect to the increase in degrees of freedom, then the model restrictions are 

acceptable.  Appendix F provides the parameter estimates and fit statistics for both the 

restricted and unrestricted two component models for all 32 basic-level groups.  For each 

of the basic-level groups, the partitioned L2 and degrees of freedom are provided, with 

asterisks indicating non-significant increases and acceptably well fitting restricted models.  

Except for the Penn State Males, 20 of the 24 restricted models provide adequate fit, 

suggesting that the restricted models capture the important features of the data and that a 

common probability of success vector describes performance.  However, only two of the 

eight Penn State Male basic-level groups showed a comparable fit. It must be 

remembered, however, that the Penn State Male samples are the largest and the resulting 

increased power to reject any restricted model is substantial.  

The overall fit of the restricted model lends further support to the notion that a 

common model structure describes performance.  As such, the restricted two component 
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model solutions will be used to describe the basic-level item-sets for the remainder of the 

analyses. 

 Understanding the probabilities of success, however, only considers half of the 

model parameters.  As hypothesized earlier, individual differences will be most readily 

apparent in the proportion parameters (i.e., the π's) which describe "how many" 

individuals are in each performance group.  

Proportion Estimates, . It was hypothesized earlier that, consistent with previous 

research findings, observed mean differences would be the result of differences in the 

proportion parameters.  As noted above, new same items appear to be especially difficult 

across the four Sex x University samples.  Tests of significant differences are reported in 

Appendix G.  Of the 59 significantly different independent z's,  over half (35) are due to 

differences between the new-same item estimates and other estimates.  On the other hand, 

only slightly more than one-quarter of the differences (17) are due to the new-different 

items, suggesting that they are not much more difficult than the old-different items with  

14 significant differences.  These tests provide further evidence that the proportion 

estimates vary more consistently across the different samples than the probability of 

success estimates, and that old items were easier than new items while performance at 

time 2 exceeded performance at time 1. 

π̂

Sex, time, item-type, and item status differences all appear to be the result of 

proportion differences.  For example, both males and females show two groups of 

performers.  The high-level males and females perform at similarly high levels, while the 

low-level males and females perform at similarly low levels.  Sex differences are the 

result of the fact that there are relatively more males who belong to the better performing 
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component and relatively more females whose scores were drawn from the lower 

performance group.  These between group proportion differences are displayed in Figures 

13-16 which show restricted model π
2

-estimates and standard-error bars for the four 

Curriculum by Sex groups over time on Old-different, New-different, Old-same, and 

New-same items respectively.   

 Figure 13 shows the proportion of subjects in the "high" ability component on 

Old-different item over time for each of the four Curriculum by Sex samples.  Because the 

low-ability component's proportion estimates ( ) are simply 1 -  , only the ’s are 

shown.  The two male samples' performance is indistinguishable.  Both improve over time 

as seen in the increased proportion of subjects in the "high" ability component by time 2.  

In contrast, there are fewer Penn State females in the "high" ability component at both 

time 1 and time 2, even though the rate of improvement is consistent with male 

improvement.  In other words, approximately 10% of the Male and Penn State Female 

samples shifted from the "low" ability to the "high" ability group on Old-different items 

over time.  The Cooper-Union females, on the other hand, performed at the same level as 

their male counterparts at time 1, yet failed to show any improvement in performance on 

the Old-different Items over time. 

1π̂ 2π̂ 2π̂

 Figure 14, which shows the proportion of subjects in the "high" ability component 

on New-different items at Times 1 and 2, is somewhat similar.  Unlike the Cooper-Union 

females, a significantly higher proportion of Penn State females are found in the "high" 

level group at time 2 than time 1 (z = 3.1, p < .05), even though performance levels for 

Penn State and Cooper-Union females are non-significantly different at both time points.  

Similarly, the Penn State males showed a significant level of improvement not seen in the 



 74 

Cooper-Union males (z = 2.3, p < .05).  Additionally, both female groups have a lower 

proportion of members in the "high" ability component than the two male groups at both 

times. 

 Consistent across both types of Different items, females have a significantly lower 

proportion of members in the "high" ability component than males at both Times 1 and 2, 

while there are no differences between Penn State and Cooper-Union students.  Further, 

the Cooper-Union females show the least amount of improvement, while the Penn State 

subjects, both male and female, improved on both types of Different items. 

 As shown in Figure 15, none of the four Curriculum by Sex groups showed 

improvement on the Old-same items over time.  However, a higher proportion of males 

than females were found in the higher performing group at both times (at Time 1 (z = 2.5, 

p < .05) and Time 2 (z = 2.5, p < .05). 

 While a higher proportion of males belong to the "high" ability component at both 

Times 1 and 2 (as shown in Figure 16), only Penn State males and females showed a 

significant improvement over time (z = 3.8, 3.3, p's < .05, respectively).  The effects of 

Curriculum and Sex on performance over time are considered further in the bivariate 

setting. 

If samples are pooled and analyzed in terms of Curriculum and Sex differences 

something akin to "main-effects" can be investigated.  Two methods of combining 

subjects' responses are used here.  The term "pooling" is used here to indicate the 

concatenation of scores.  For example, if the first four Penn State females scored 9, 6, 3, 

and 2 on the 9 Old-same items at Time 1, and 14, 12, 3, and 4 on the 15 Old-different 

items at Time 1, eight scores would be analyzed as though they represented independent 
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observations, resulting in scores 9, 6, 3, 2, 14, 12, 3, and 4.  Scores can also be summed 

within subjects, increasing the number of trials.  In this example the four Penn State 

females would have scores on Old items 23, 18, 6, and 6.  Unless otherwise noted, 

combinations of basic-level item-sets are pooled using the first method.  The summary-

level items represent the only exception.  Because items are not generally separated 

according to whether they require "same" or "different" responses, the summary-level 

item-sets represent summed scores over the item-status variable. 

 The estimates for the mixing proportions are not the same across Figures 13-16.  It 

appears that some items are more difficult than others based upon the proportion of 

subjects who belong to the "high" level group.  To test this hypothesis, Figure 17 presents  

π̂ 's for all four of the restricted two component Item-type by Item-status sets (e.g, Old-

same items at Time 1, Old-different items at Time 1, etc.).  As shown in Figure 17, the 

proportion of subjects in the "high" component drops at both Time 1 and Time 2 across 

these problem sets, indicating that Old-same items are the easiest, followed by Old-

different, New-different, and New-same items.  Z-tests indicate that π
2

OS(454)
 > 

π
2

OD(454)
 > π

2

ND(454)
 > π

2

NS(454)
 for both Time 1 and Time 2 samples (with one 

exception:  New-same problems at Time 2 were non-significantly more difficult than 

New-different problems at Time 2).  Over both sample times each item set is significantly 

more difficult than the one preceding indicating the order of problem difficulty. 

 As with the same items, a significantly lower proportion of females belong to the 

higher performing group for both Different items at both Times 1 and 2, while there is no 

effect for Curriculum.  Overall, it appears as though the Penn State subjects showed more 
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improvement than the Cooper-Union subjects, and that females improved more than 

males.  To test this hypothesis, performance across the combined set of all items (Old-

same, Old-different, New-same, and New-different) were modeled.  

 Tests of other hypotheses can be designed as well.  For example, the differential 

effects of stimulus complexity on males and females can be evaluated.  This hypotheses 

can be evaluated for each of the Item-types (Old and New) by looking at differences in 

proportion estimates.  Figure 18 shows restricted model "high" component proportion 

estimates for all females on Old and New items at Times 1 and 2.  The difference between 

the estimates at Time 1 is significantly greater than the difference at Time 2 (z = 2.64, p < 

.05), even though a significantly larger proportion of individuals belongs to the higher 

performing component for Old items than New items at both Times.  The picture is similar 

for males.  As shown in Figure 19, the difference between the proportion of subjects in the 

"high" component on Old and New items at Time1 is significantly larger than the 

difference at Time 2 (z = 2.72, p < .05).  This suggests that for both males and females, 

the effects of stimulus complexity are reduced with experience.  Further, performance 

increased more for the more difficult items.  And while the Cooper-Union students did not 

receive the same curriculum the Penn State students did, both groups were involved in 

Engineering. 

As a direct test of the effects of Curriculum, Figure 20 shows the proportion 

estimates of "high" level performers over all items for Penn State and Cooper-Union 

subjects at Times 1 and 2.  Although probably partly due to the power derived from larger 

number of Penn State subjects, the figure shows a significant increase in performance for 

Penn State subjects over time (z = 5.44, p < .05) and a non-significant increase in 
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performance for the Cooper-Union subjects over time (z = 1.7, p = n.s.).  A significantly 

greater proportion of Penn State subjects than Cooper-Union subjects shifted from the 

"low" level component to the "high" level component over time. 

Sex differences over time are presented in Figure 21 which shows the proportion 

estimates of males and females over time.  It was hypothesized that female improvement 

over time would be greater than male improvement for reasons cited by Sherman (1967), 

contrary to the findings of other researchers (e.g., Baenninger & Newcombe, 1989).  This 

was not, however, borne out by the data.   Both sexes improved similarly significantly 

over time, and a greater proportion of males belonged to the "high" level component at 

both times.  Figures 20 and 21 are, in effect, Curriculum x Time and Sex x Time 

interaction terms, respectively.  Figure 22 shows what might be viewed as the three way 

interaction between Curriculum, Sex, and Time in the following manner.  The "high" 

ability component proportion estimates for each of the four Curriculum by Sex groups 

were examined at Times 1 and 2 for all items.  The difference between the proportion 

estimates at times 1 and 2 were then computed.  These differences were then graphed in 

Figure 22.  So, for example, the point indicating 0.082 in Figure 22 represents the 

proportion of Penn State Males in the "high" level component at Time 2 ( π  =  0.742) 

minus the proportion of Penn State Males in the "high" level component at Time 1 ( π  =  

0.660) .  In essence this figure represents the relative increase in the proportion of subjects 

in the "high" level component over time.  While Figure 21 shows that there is no overall 

improvement difference between males and females,  Figure 22 demonstrates that the 

Penn State Females show the largest increase, followed by Penn State Males.  Cooper-

Union subjects, performed at a uniformly high level over time, showing less improvement.  

2ˆ

2ˆ
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The results presented in Figures 20 and 21 are interactions subsumed by the interaction in 

Figure 22.  In sum, the females who received the solid-modeling curriculum showed the 

greatest increase in membership in the "high" level component, followed by the males 

who received such training.  Both males and females without the solid-modeling 

curriculum showed no such increases in performance.  

General Model Findings 

In general, it appears that probability of success estimates vary in a less systematic 

fashion than the proportion estimates, suggesting that their differences could be more the 

result of sampling error than any real population differences.  It was hypothesized that a 

mixture model would show mental rotation performance change to be the result of 

changes in component membership rather than changes in probabilities of success, and 

most between group differences appear to be the result of consistent proportion 

differences.  In other words, there does indeed seem to be two groups or types of 

performers:  those who perform slightly, but significantly above chance (
1

=  0.6283; 

where chance is θ
1
 =  ½), and those who perform at near ceiling levels (θ̂

2
 =  0.9336) . 

θ̂

Summary-level Analyses 

 While the models listed above separate items based on whether they were the 

same as or different from the target item, Vandenberg and Kuse (1987) type mental 

rotation tasks items are rarely separated into same and different problems for analysis.  

For this reason, the tasks were modeled without regard to same-different item status as 

well so that model results could be compared to previous research.  In addition, 

combinations of variables were modeled as well.   All task combinations were modeled 
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with 1, 2, 3, and 4 component binomial mixtures.  Fit indices, parameter estimates and 

their standard errors are presented in Appendix H, with the two component models 

outlined for clarity.  Often it was difficult to decide on whether two or three component 

models should be used to fit the data because fit indices were mixed.  Three component 

models were accepted, however.  While the justification for doing so will become more 

apparent in Chapter V, consider the following rationale.  The basic-level group 

PMOS1(258) has nine items, while the basic-level group PMOD1(258) has fifteen items.   

Many subjects perform at the lower-level on both Old-same and Old-different items.  As 

such, their probabilities of success on the nine Old-same items is 0.6283.  Similarly their 

probability of success is 0.6283 on the 15 Old-different items.  Their overall probability of 

success on the 24 Old items remains 0.6283.  Those subjects who perform at the higher 

level on both Old-same and Old-different items is consistently 0.9336 on all items.  Those 

subjects who perform at the "high" level on the "same" items and at the "low" level on the 

"different" items have an overall probability of success on the set of all Old items equal to 

the weighted average of the two high- and low-level probability of success values. In 

effect, an intermediate probability of success between 0.743 and 0.819 (the weighted 

averages of the two restricted model 
r

's).  The result is a three component model with 

the same "low" and "high" probabilities of success as the two component model and the 

addition of a third, "intermediate" component which captures inconsistent performers.  In 

addition to the unrestricted models, Appendix I shows the three component model 

solutions with the "low" and "high" values of  θ set equal to the two component restricted 

θ's, and partitioned likelihood chi-square statistics to assess fit. 

θ̂
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These restricted three component models can be used to test hypotheses about the 

effects of each of the variables on performance.  For example, to test the hypothesis that 

new items are more difficult than old items for each component group, the dataset is 

partitioned by item-type only.  In this fashion, the high and low performance groups are 

compared across item-type (i.e., π̂
1
 
(O)

 is compared to  π̂
1
 
(N)

 ,  
 (O)

 is  
2

π̂

compared to π  
(N)

 ,  π̂
3
 
(O)

  is compared to  π̂
3
 
(N)

 , where the letter in  
2

ˆ

parenthesis identifies the group - in this case Old and New items).  Figures 23-27 portray 

three component π-estimates for each of the five variables of interest, item-type, 

curriculum, sex, item-status, and time respectively.  For each of the five variables, 

observations were pooled over the remaining four variables, and modeled by two, three, 

and four component mixtures.  In all cases, restricted three component models were 

accepted as the best-fitting, simplest models. 

Figure 23 shows a significantly smaller proportion of subjects in the highest 

performance group on New items as compared to Old items (z = 13.7, p < .05).  And 

while the intermediate group contains more individuals on the New items (z = 4.6, p < 

.05), the lowest performing group is significantly larger for the New items than Old (z = 

10.7, p < .05).  Differences in task complexity are accounted for by large differences in 

component membership.  Figure 24 compares parameter estimates for Penn State and 

Cooper-Union subjects, indicating little overall difference between the two curriculum 

groups (z's < 2.0, p's = n.s.).  While this suggests that there is little overall difference 

between the two engineering curricula, these estimates are pooled across Time.  As seen 

in Figures 20 and 22, Penn State subjects showed greater performance gains over Time 
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than the Cooper-Union subjects. Figure 25 shows the overall effect of sex.  In this figure, 

the proportion estimates show the relatively higher proportion of males the highest 

performance group (z = 10.6, p < .05) and a higher proportion of females in the lowest 

performance group (z = 8.6, p < .05).  Overall, sex differences, like differences in task 

complexity, appear to be well captured by differences in group membership.   

It was hypothesized that items that required a "same" response would not be 

different than those requiring a "different" response, even though there is some evidence 

in the literature to suggest that each item required different solution times.  As seen in 

Figure 26, when items are pooled across Curriculum, Sex, Item-type, and Time, there are 

no significant proportion differences between Same and Different items (z's < 2.0, p's = 

n.s.).  Note, however, that while there are no differences between Same and Different 

items there is a significant interaction between Item-status and Item-type.  Figure 28 

shows the "high" component proportion estimates (π
2

) from Figure 17 arranged to show 

how Item-status and Item-type interact.  By comparing the difference between Same and 

Different "high" component proportion estimates (π̂
2

's) for Old and New items  
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2
 
(OS)

- π
2
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 ) the interaction can be tested.  "Same" items 

more than "different" items become more difficult as complexity increases (at Time 1, z = 

6.4, p < .05; at Time 2, z = 3.4, p < .05).  In other words, complexity affects "same" and 

"different" items differentially. 

The effects of time are shown in Figure 27.  In effect, the number of subjects 

performing at high levels increases over time (z = 6.1, p < .05), and a reduction is seen in 

the proportion of subjects in the "intermediate" group (z = 5.7, p < .05).  When 
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performance differences exist, they appear to be well described by changes in component 

group membership.  In effect, the number of subjects performing in the "high" level 

component increases over time.  In sum, old items are easier than the newer more complex 

items, males perform at higher levels than females, and performance increases over time. 

A more complete analysis of the relationships between variables will be 

considered in the bivariate context in the next chapter.   For example, questions 

concerning whether old-same items are more difficult than old-different or new-same 

items are most easily answered from a bivariate perspective.  In this fashion, subjects 

responses over item type, item status, and time can be assessed in comparison with each 

other and the two between subjects' variables. 

Partitioning Based on Component Membership 

 Evidence presented to this point indicates that a two-component mixed binomial 

distribution describes mental rotation performance when Same and Different items are 

examined separately.  One of the advantages of the current modeling perspective is that it 

allows for the partitioning of subjects based on the posterior probability (defined in 

Equation 12, p. 32) that a score came from one of the two components.  Subjects can be 

jointly classified as belonging to either the "high" or "low" level groups on both Old and 

New items or for Time 1 and Time 2.  This bivariate classification will be considered 

further in the next chapter.  By classifying subjects based on the component from which 

their score most likely came, it becomes possible to test a range of hypotheses concerning 

individual differences in performance by analyzing what makes subjects in one 

component different from subjects in another component beyond the number of items 

correct.  If the components are psychologically valid, then subjects classified as high-level 
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performers might be different than those classified as low-level performers on other tasks 

that relate to spatial ability.  It is also possible to evaluate the performance of each kind of 

performer with respect to the effects of rotation angle on performance.  While it was 

hypothesized earlier that each item's rotation angle would not affect performance, it may 

be the case that high and low-level performers respond differentially to different angles of 

rotation.  One might envision that "high" level performers' accuracy is not dependent on 

the angle of rotation because their ability is sufficiently developed so that all rotations use 

the same set of well-mastered procedures.  Individuals in the lower group, on the other 

hand, may find some angles of rotation more difficult than others because their procedures 

are more object dependent.  Issues concerning factors that might covary with component 

membership are considered next. 

Covariant Analysis 

 Achievement Tests.  It was hypothesized that when different subjects groups show 

similar model structures, there are underlying similarities between the individuals in those 

groups.  High school and college cumulative GPA's, SAT scores, and college placement 

scores (one for English, one for Chemistry, and four for Mathematics) were obtained for 

Penn State subjects.  It should be the case that if similar parameters define performance 

for both males and females on a certain item-set (e.g. Old items at Time 1), then 

performance should be similar on these achievement measures as well.  In other words, if 

the best performing groups for males and females on the Old items at Time 1 have similar 

θ-values, then there should be no difference between their SAT math scores.  Conversely, 

groups differentiated by their θ-parameters should have different outcomes on these 

measures as well.  To answer this question, t-tests were performed for each of the above 
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measures, with either sex or component group membership independent variables.  Table 

10 provides sample sizes, means, standard errors, t-statistics, and p-values for males and 

females without regard to performance group.  Interestingly, there was only one sex 

difference for all of the comparisons.  Females had a higher high-school GPA than males.  

It might have been expected that when conditioned on sex, there would be differences on 

many of the 10 variables because there is a greater relative proportion of males in the 

higher performing group than females.  It must also be remembered that the samples here 

are not representative of the general population.  Engineering students, both male and 

female, are selected for admission based, in part, on these criteria.  As a result, sex 

differences are less likely to be found here than they might be with a different sample. 

 The t-test, however, it not an omnibus test of distributional differences, but rather 

a test of mean differences in the normal setting.  A potentially stronger claim about the 

differences between males and females may be possible.  For each t-test conducted, a 

Kolmogorov-Smirnov two-sample test was conducted to identify distributional differences 

on the achievement tasks (Roscoe, 1975).  Under the null hypothesis that there are no 

differences in the distributions associated with the achievement scores, the statistic 

K
D

 < 1.36 [(n
1

+n
2
 )/n

1
 n
2
 ] ,      (14) 

at the α = 0.05 level, where n
1
  and n

2
  represent cell frequencies (Roscoe, 1975). K

D
 is 

simply the maximum relative frequency difference for all levels of the observed 

distributions.   In the analyses which follow, only the presence or absence of significant 

differences are reported for the Kolmogorov-Smirnov tests.  While not as powerful as a t-

test at detecting mean differences when normality holds, this test is designed to measure 

any distributional differences.  In no case, however did the test detect a significant 
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difference between males and females at the α = 0.05 level, suggesting that there were no 

distributional differences between males an females on any of the 10 achievement tasks. 

Sex-differences on each of these variables can also be evaluated within 

performance group.   Tables 11-14 provide sample sizes, means, standard errors, t-

statistics, and p-values for males and females within each performance group on a 

representative sub-sample of basic-level item-sets.  Performance groups were defined by 

posterior probabilities such that each subject's score was placed in the component from 

which it was most likely drawn.  Each of the four tables defines "high" and "low" 

performance based on a subset of items.  Because there were many models that could have 

been used to assign individuals to either the "low" or "high" performance groups, four of 

the two component models were used so that the relationship between external variables 

and the conceptualization of mental rotation performance forwarded here was not 

dependent on any one model. Thus, "high" and "low" performers are compared without 

regard to sex. Results are similar across all four partitions, indicating that there is probably 

some validity to the model conceptualization proposed here and that subjects are 

reasonably partitioned.  The remaining possible partitions were similar in all respects to 

those presented here, so these effects are not unique to any particular partition.  Overall, 

there were almost no sex differences within component.  The only variable which showed 

a consistent difference was High-school GPA, consistent with the overall sex difference 

on this variable.  It is perhaps not surprising that the choice of models is not especially 

crucial because the same data are being partitioned only slightly differently by the 

posterior probabilities of the different models.  Additionally, Kolmogorov-Smirnov two-

sample tests were conducted, however, only 1 of the 80 comparisons reached significance.  
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As shown in Tables 11-14, sample sizes for the achievement test comparisons ranged 3 to 

49 and averaged approximately 25.  Some of the smaller samples doubtlessly show no 

differences as a result of insufficient power rather than a lack of actual differences.  In 

general, however, it appears that within component, there are few sex differences on 

achievement tasks. 

To provide another perspective, the three component model partitions were also 

examined.  Two are presented in Tables 15 and 16 showing performance based on Old 

items at Time 1 and New items at Time 2, but all four are similar.  Consistent with the two 

component models, none of the t-tests and only 1 of the 60 Kolmogorov-Smirnov two-

sample tests showed a sex difference within component. 

 However, when the components are compared without regard to sex, a very 

different pattern emerges.  Tables 17-20 provide sample sizes, means, standard errors, t-

statistics, and p-values for four of the eight possible partitions defined by posterior 

probabilities from the two component models, without regard to sex.  Chemistry, English, 

and GPA seem to be generally unrelated to component membership, but SAT and Math 

achievement tests are strongly related to group membership.  In two of the four cases, the 

"high" performers outscored their "low" performing counterparts as measured by t-tests.  

Further, the Kolmogorov-Smirnov two-sample test indicates distributional differences on 

many of these variables.  While none of the variables differed, according to this test, 

across all four partitions, the math achievement tests seem to be best at differentiating 

between the two performance groups.  The fact that not all of the partitions show between 

component differences will be considered further in the next chapter.  In sum, while there 

seems to be no difference between either "high" performing males and females or "low" 
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performing males and females, the "high" and "low" performance groups show strong 

differences, at least with regards to math and science achievement test scores. 

 Rotation Angle.  It was assumed when the binomial mixture model was first 

outlined that rotation angle would have little measurable effect on accuracy scores, 

however this is an empirically testable question.  If the amount of rotation required to 

align "same" items to their target for each item has no effect on accuracy, then the overall 

proportion of correct responses for an item should not vary as a function of rotation angle.  

Each of the "same" items were rotated on all three (e.g. X, Y, and Z) axes.  For each 

object, the X, Y, and Z axes were defined by the orthogonal faces of the cubes that make 

up the objects.  The decision as to which axis to assign the label X, Y, and Z was made on 

the target drawing by the graphics program on which the objects were created.  In general, 

the target objects' Y axis corresponded to the vertical axes, while the X axis was primarily 

a horizontal axis and the Z axis an axis in depth, as shown in Figure 29.  As a result, the 

Z-axis primarily describes rotations in the picture plane, while the X- and Y-axes describe 

vertical and horizontal rotations in depth, respectively (at least until after the first rotation 

when the axes are shifted).  In measuring the amount of rotation required to align "same" 

objects, each of the three axes were fixed with respect to the orthogonal faces of the 

objects, and rotated as necessary to achieve congruence with the target.  Unfortunately, 

when rotating an object on three axes, the rotations are non-commutative.  That is, a 45° 

rotation along the X-axis followed by a 45° rotation along the Z-axis is not the same as a 

45° rotation along the Z-axis followed by a 45° rotation along the X-axis, as demonstrated 

by a randomly oriented object used in this study (Figure 30).  This leads to a difficulty in 

measuring the angle of rotation for each item with respect the three axes because there are 
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many possible rotations within each frame of axes, and many frames of axes (e.g. axes 

that remain stationary while the object is rotated vs. axes that remain fixed with respect to 

the faces of the object during rotation).  This has presumably been the impetus for most 

researchers to vary the rotation items along only one axis at a time (e.g., Shepard & 

Metzler, 1971).  In real-life situations, objects may require rotation about more than one 

axis for proper orientation.  The simple act of fitting a key into a lock, for example, 

requires that the key be rotated on at least two of its three orthogonal axes.  For each of 

the 24 "same" items, one of the many possible rotations was arbitrarily chosen and then 

measured about the three axes.  In each case, rotations were made in either a positive 

(clockwise) or negative (counter-clockwise) direction, and never exceeded 180° (a 190° 

rotation on an axis is equivalent to a -170° rotation on the same axis, and the -170° 

rotation was used under the assumption that subjects would choose to rotate an object -

170° rather than 190°).  For analysis, the absolute angle of rotation was used, assuming 

that it is equally difficult (or easy) to rotate an object 170° as it is to rotate it -170° and 

that labeling one rotation as negative and the other as positive is somewhat arbitrary.  

Using this framework, accuracy can be assessed relative to the absolute angle of deviation 

for each of the three axes separately.   

In addition, the sum of the angular deviations about the three axes of rotation 

should also be considered, especially given the non-commutative nature of the rotations.  

By adding the three absolute angles of rotation, one measure of the total amount of 

rotation necessary to align the objects to the targets can be assessed.  In some sense this 

captures part of the spirit of rotation, in that objects which require many degrees of 

rotation will do so regardless of the order of axes used in rotation, while those that only 
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deviate slightly will require minimal rotation regardless of the axes, even though there is a 

less than perfect correspondence between the sum of absolute rotation angles under 

different rotation orders.  As seen in Panels B and C of Figures 30, both objects are 

rotated a sum of 90°, and both are approximately equally different from the initial 

orientation shown in Panel A of Figure 30. 

As Carpenter and Just (1985) note, in addition to separate rotations about a set of 

orthogonal axes, objects rotated in three space also have a unique, object-defined axis that 

defines the minimum amount of rotation necessary to align the objects.  Carpenter and 

Just (1985) found that this rotation axis is preferred by high ability subjects. For each of 

the 24 "same" objects, the angle of rotation about this unique axis was measured 

according to Funt (1983).  In addition to accuracy assessments relative to the three 

orthogonal axes and the sum of the deviations about these axes, accuracy was assessed 

relative to the unique axis as well.  It might be expected, for example, that the accuracy 

rates of "high" performing subjects as classified by posterior probabilities, would have no 

relationship to rotation angle except perhaps the unique axis angle.  "Low" performing 

subjects, might be expected to have some dependence on rotation angles about the 

individual axes or the summed angles of rotation if they use a rotation strategy to solve the 

mental rotation items.  If, on the other hand, the "low" performing subjects have scores 

completely unrelated to rotation angle while the "high" performing subjects have scores 

related to rotation angle, evidence which suggests that the "low" performers are using a 

non-rotational strategy will have been found.  To test these hypotheses, posterior 

probabilities from the two component model for "same" vs. "different" response items was 

used to partition subjects into the "high" and "low" performance groups.  Once subjects 
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were classified according to performance group, the proportion of subjects responding 

correctly to each item was plotted against the summed rotation angle, the rotation angle of 

each of the three orthogonal axes separately, and the object-defined minimum axis 

(Figures 31-35).  Each of the plotted samples was fit by linear, quadratic, cubic, and 

quartic least-squared regression lines.  Regression equations were chosen based on the 

lowest possible number of terms which explained a significant amount of variance (i.e., 

when a linear term fit, the quadratic, cubic, and quartic terms were rejected).  Often, 

however, none of the regression equations was significant.  Regression lines which predict 

a significant amount of variance have their r
2

's outlined by ellipses.  In addition to the 

least squares regression line, 95% confidence bands are also displayed for each regression 

line (Snedecor & Cochran, 1980). 

Obviously, the least squares regression lines for the "high" performers will be 

above the lines for the "low" performers because the groups have been partitioned 

according to performance levels.  It remains to be determined, however, whether the 

slopes of those lines will be different and whether the form of the lines (e.g. linear, 

quadratic, etc.) will be different.  With the exception of the summed rotation angle (Figure 

31) where the proportion of correct responses decreased slightly with summed rotation 

angle for "high" level performers, the proportion of correct responses is unrelated to 

rotation angle for both "high" and "low" level performers. 

Earlier model results indicated that within-sex differences are much more dramatic 

than between-sex differences (i.e.,  there is little difference between males and females 

within component).  To examine this result more fully, regression lines and confidence 

bands were generated for males and females separately within each of the two 
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components.  Figures 36-40 show the proportion of correct responses plotted against 

summed rotation angle, the object-defined rotation angle, and the three orthogonal rotation 

angles for male and female "high" and "low" performers.  As seen in these figures, males 

and females have non-significantly different regression lines for all of the rotation angle 

measures when compared within component.  The only significant regression line belongs 

to females in the "high" level component when proportion of correct responses is 

compared to summed rotation angle, and it is still non-significantly different from the 

male regression model. 

Summary.  Results from the "high" and "low" performers show that, in general, 

"low" subjects' accuracy is much more variable than had been anticipated; the data are 

certainly not homoscedastistic.  Overall, the analysis of rotation angle with respect to 

accuracy indicates that rotation angle has little effect on performance, but a linear 

dependence comes closest to describing the relationship between accuracy and rotation 

angle, at least for the "high" level performers.  There was no relationship, however, 

between accuracy and the minimum angle of rotation about a unique axis as had been 

anticipated.   

 

Assumptions of the Binomial Mixture 

 The binomial model is based on two assumptions:  that the probability of success 

for each trial is the same and that each trial is stochastically independent from all other 

trials.  The  plausibility of these assumptions can be gauged by measuring the proportion 

of subjects responding correctly on each item and the inter-item correlations, both within 

component.  If both assumptions hold, then the proportion of correct responses will be 
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constant across all items and the inter-item correlations will be zero within sampling error 

within each component.  The constant θ assumption will be tested first, followed by a test 

of trial to trial independence.  

 Constant θ.   Results to this point suggest that there are two different types of 

performers on the mental rotation task when Same and Different items are considered 

separately, but that the probability of success estimates for the unrestricted two component 

models vary across Curriculum, Sex, and Time to a greater than anticipated extent.  One 

possible reason for this phenomena is a failure of the constant θ assumption.  In other 

words, some trials may be more easily solved than others.  

 As with the analysis of rotation angle, subjects were partitioned based on posterior 

probabilities into high- and low-level performers for this analysis.  In addition, items were 

segregated based on item-type (Old, New), item-status (Same, Different) and Time.  For 

each of these samples, the proportion of subjects who responded correctly was measured 

for each trial.  Within each component the expected proportion correct is , the binomial 

parameter, where [ (1 -    )/n]
1/2

 estimates the standard error of  .  For each 

component, 95% of the observations should fall within +

p̂

p̂ p̂ p̂

 2 standard errors of , and the 

average  will be used to find an estimate of the standard error.    Figures 41-45 provide 

histograms of the item success rates for a two component and a three component example. 

These figures were chosen because they show the mean proportion of subjects responding 

correctly in each component for the cases that most egregiously violate the constant 

probability assumption.  Figures 42, 44 and 45 which represent the performance of 

subjects from the intermediate and highest level groups are not at all inconsistent with 

p̂

p̂
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spirit of the constant probability assumption in that most of the proportions are clustered 

about a single mean value.  In contrast, Figures 41 and 43 show proportions that are 

bimodal or at least not clustered together.  In fact, very few of the proportions fall within a 

95% CI of the mean of the proportions.  Interestingly, the only variable that seems to have 

any association with these clusters is summed rotation angle.  By partitioning proportions 

from Figure 41 at the mean, the easier items ( xe ) have a marginally higher summed 

rotation angle than the harder items ( xh ) ( xe = 168.5 vs xh  = 141.9°, t = 1.85, p < .11), 

suggesting that the poorest performers' accuracy was affected by rotation angle for some, 

but not all items.  

The majority of the data, however, are more similar to Figures 42, 44, and 45 than 

Figures 41 and 43, indicating that the constant probability of success assumption is likely 

to be valid enough to use a mixture of binomials model.  In many cases 95% of the data 

were contained within + 2 standard errors though less often for the "low" performers, as 

can be seen in the figures.  In general, there appears to be much more variability in 

accuracy than expected.  But again, at issue is not whether the assumptions of the model 

have been violated, but whether they have been violated to the extent that the model is no 

longer useful.  Based on the overall model findings above it would appear that it has not.  

The "low" component seems to describe performers with an overall low accuracy rate.  

The "high" component, on the other hand, seems to reflect the fact that some individuals 

perform at extraordinarily high levels regardless of the complexity of the rotation object. 

 Independence Across Trials.  Beyond the intuition that it is difficult to see how 

getting an item right or wrong (especially without feedback) could influence how a subject 

responds to the next item, assessing independence is a difficult issue.  One might expect 
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that some subjects use a strategy which involves solving the easiest item (in a row of 

items, see Appendix A), then evaluating the remaining items against both the target and 

the first-solved item.  In this way, solutions to the remaining three items are dependent on 

whether the first item was solved correctly, as the third item is dependent on whether the 

first two were solved correctly, and so forth.  This plausibility makes a check of the 

independence assumption more important.  However, there is evidence to indicate that 

moderate departures from independence are not especially damaging to the model 

conclusions (Thomas & Lohaus, 1993).  In order to test this assumption, each item, scored 

as either correct (1) or incorrect (0) was correlated with all other items within Item type, 

Item status, Time, and component for the two component basic-level models and the three 

component summary-level models.  In other words, success or failure on the first rotation 

item was correlated with success or failure on the second, third, etc. items.  Frequency 

histograms of these correlation coefficients should be centered about 0 if the 

independence assumption holds.  In addition, Huber's (1977) distribution free result 

provides a means of estimating a standard error of r.  As with the constant θ assumption, 

we would expect 95% of the correlations to be found within + 2 standard errors. 

 Figures 46-50 provide examples of correlation coefficient histograms for the two 

components on Old-Different items at time 2 and the three components for Old items at 

time 2, which most strongly appear to violate the independence assumption.  As can be 

seen in the figures, the highest and intermediate components conform to an independence 

expectation and approximately 95% of the correlations are within two standard errors of  0 

(Figures 47, 49 and 50).  The two low components, on the other hand, contain between 65 

and 71% of the correlations in these examples, suggesting that only the "low" 
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performance group's inter-item correlations present a departure from a mean correlation of 

0 (Figures 46 and 48). As hypothesized, it appears that the independence assumption has 

been violated, but only to a moderate degree and to the greatest extent for the "low" 

performers.  Certainly the lack of independence presented here is within a tolerable range.  

As a result, it does not appear as though the model should be rejected based on violations 

of either the constant probability or independence assumptions, because while neither 

assumption strictly holds, neither appears to call into question the structure of the data to 

any serious degree. 
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CHAPTER V 

 

Bivariate Binomial Mixture Analyses 

 

Results to this point suggest that at least the major features of the data are 

captured by a mixture of binomials distribution.  In addition to performance on the 

individual tasks, subjects' joint performance across task and over time are of interest.  

Using the joint model of performance outlined above (see Equation 13, p. 36)  the effects 

of curriculum differences and how item difficulty affects performance can be assessed.  

This chapter examines the relationship between variables (e.g., Curriculum and Sex) 

across the different levels of the within-subject variables (Item type,  Item status, and 

Time).  Usually within subject variables are considered from a correlational perspective, 

where data are assumed to be roughly bivariately normal.  In this case, the joint 

distributions are considered from a mixture perspective.  Joint frequency histograms 

show bivariate performance for three representative variable pairs in the top panels of 

Figures 51-53:  One which varies over Item-status, one which varies over Item-type, and 

one which varies over Time.  The top panel in each figure shows the observed joint 

frequencies, while the bottom panel shows the expected frequencies under the model.  In 

both panels, shaded regions indicate the joint component groups, and marginal 

histograms have also been included.  Two aspects of these figures are noteworthy.  First, 

there is a strong correspondence between observed and expected frequencies under the 

joint model.  The marginal and joint frequencies both appear to correspond well with 

expected values, and each of the four observed joint probability masses seem to agree 

with expected values in shape and overall appearance.  Altogether, the figures indicate 
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that the model successfully captures the spirit of the data.  Second, the data are at 

variance with the kind of structure usually assumed in a correlational setting.  The 

observed data are clearly inconsistent with a bivariate normal perspective which would 

predict symmetric marginal distributions and a single "mound" of data somewhere near 

the center of the figure's floor. 

Before the bivariate results are presented, an unusual feature of the data requires 

consideration.  As noted in Table 1, the sample sizes at Time 1 and Time 2 are much 

larger than the number of subjects who participated at both times.  This was due to 

subjects' reluctance to use their Social Security Numbers as identifiers.  For example, of 

the 28 Cooper-Union females who participated at Time 1, all but 1 participated at Time 2.  

However, only 12 provided a subject identifier which allowed their performance to be 

tracked over time.  As such, the univariate analyses which evaluate performance at both 

time points are based on somewhat different samples than the bivariate analyses.  As 

such, the results often show minor discrepancies.  The univariate results have much 

greater power than the bivariate results, so it is difficult to evaluate which sample 

provides the "best" view of performance change.  Doubtlessly results that are consistent 

in both the univariate and bivariate settings are the most reliable. 

A first look at how performance changes over time, by item-type, and by item-

status can be observed by using the categorizations provided by the univariate posterior 

probabilities.  Figures 54-59 provide an graphic view of performance change, while the 

bivariate model framework is implemented below.  Figures 54-59 show the transition of 

subjects from one basic-level item-set to another for 12 of the item-set pairs based on the 

posterior probabilities from Chapter IV.  While there are 28 possible pairings of the 8 

basic-level groups, only those that were psychologically interesting (i.e., those constant 
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across two of the three variables which describe each item-set) are presented.  For 

example, Old-same items at Time 1 are compared to Old-different items at Time 1 

because they differ only on the item-status dimension, but not with New-different items 

at time 2 because this kind of comparison seems less interesting. 

In each of the figures, sample sizes for each component are provided in boxes 

which are proportionate to sample size.  Arrows show changes from one item-set to the 

other.  For example, the left panel of Figure 54 shows that 51 subjects were classified as 

most likely belonging to the "low" component on Old-same items at Time 1.  Of those 

51, 38 most probably remained in the "low" component for Old-different items at Time 1, 

while 13 most probably came from the "high" component on Old-different items at Time 

1.  The figures which show item-sets within time provide one measure of the relative 

difficulty of each item-set.  Consistent with the univariate results, both panels in Figure 

54 show that Old-different items are more difficult than Old-same items because a 

relatively small number of subjects classified as "Low" performers on the first item-set 

are classified as "High" performers on the second item-set at both Time 1 and Time 2.  

Similarly, a relatively high proportion of subjects change from the "High" level on Same 

items to the "Low" level on different items at both times.  In contrast, Figure 57 shows 

that Old-different items were not easier than New-different items because there is much 

more consistency from set to set than with Old-same and Old-different items. 

The figures which show item-sets across time provide a measure of the amount of 

learning or performance increase over time.  For example, the panels on Figure 56 show 

that many of the subjects classified as "Low" at Time 1 changed component by Time 2.  

This increase in performance was offset somewhat by a decrease in performance by some 
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of the individuals in the "High" group.  The corresponding figure for New items are 

shown in Figure 59.  In this case, performance appears to be much more stable. 

Parameter Estimation and Interpretation   

The probability of success and proportion parameters for the joint mixture model 

are the same  as those for the univariate models, and do not require further estimation.  

Though they were taken from the complete sample, they should provide the best 

estimates.  The joint model has additional parameters not found in the univariate models 

which reveal important information:  π
ab
  and τ

ab
 (where a, ranging from 1 to k, refers 

to a component on X, and b, ranging from 1 to k, refers to a component on Y).    The 

joint proportion π
ab
  describes the proportion of subjects who belong to component a of 

variable X and component b of variable Y, while the transition parameter τ
ab

 describes 

the proportion of subjects from component b of variable Y who were in component a on 

variable X.  The transition parameters represent shifts in subjects' performance from a 

given level on the first item set to a level on the second item set.   

Basic-Level Analyses 

For all of the panels in Tables 21 - 25, the X variable is on the vertical axis and 

the Y variable is on the horizontal.  For example, from Panel A of Table 21, Old-same 

items at Time 1 is the X variable and Old-same items at Time 2 is the Y variable.  The 

choice of which variable is X and which is Y is in many ways arbitrary, except when 

comparisons of the same item-set are being made over time.  In this case, the transition 

from Time 1 performance to Time 2 performance is a natural one.  Note that the joint 

proportion estimates (π̂
ab

) sum to 1, while the transition estimates (τ ̂
ab
 ) sum to 1  
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across each row (variable X).   

For Tables 21 - 25, 2 x 2 contingency tables are provided for the 12 basic-level 

item pairs (labeled panels A-L).  The panels were constructed based on the posterior 

probabilities of component membership from the univariate models.  The maximum 

likelihood estimates for the joint π-weights are presented at the top row of each cell with 

their standard errors in parentheses immediately below them.  In addition, the observed 

proportion of subjects in each of the joint components (denoted p̂
ab

) using the  

univariate posterior probabilities are presented to the right of the π̂
ab

's.  For example,  

Panel A of Table 21 indicates π̂
11
 = 0.059, π̂

12
 = 0.058, π̂

21
 = 0.119, and π̂

22
 =   

0.763.  According to the joint model, 5.9% of the subjects performed at the "low" level  

on Old-same item at Time 1 and Time 2, while 76.3% of the subjects performed at the 

"high" level on these items at both times.  These four estimates sum to 1 within rounding 

error.  According to the posterior probabilities, the observed proportion of subjects who 

performed at the "high" level on these items at both Time 1 and Time 2 was 

p̂
22
 = 0.775; very close to the parameter estimate of  π̂

22
 = 0.763 (z = 0.4, p = n.s.)   

suggesting that the model is in close correspondence with the data. 

The estimates of the transition weights are in the third line of each cell of Tables 

21 - 25 with their standard error presented in parentheses immediately below.  In 

addition, the observed proportion of subjects from component a of variable X who 

"move" to component b of variable Y, denoted t ^
ab

, are presented to the right  

of the τ ̂
ab
 .  For example, from Panel A of Table 21, of those subjects from the  
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"low" component on Old-same items at Time 1,  τ ̂
11
 = 0.506 and τ ̂

12
 = 0.494.  

This indicates that of those subjects who perform poorly on the Old-same items at Time 1 

(the "low" component) approximately half remain in the "low" component at Time 2 

while approximately half change to the "high" component on Old-same items by Time 2.  

Again there is close correspondence between the observed proportion based on the 

univariate posterior probabilities and the parameter estimate.  For example,  

τ ̂
12
 = 0.494 is non-significantly different from the observed proportion t ^

12
 = 0.700  

(z = 1.6, p = n.s.).  In most cases there is a close correspondence between  

the observed and estimated transition values. The bottom row of each cell contains the 

frequency of subjects in each joint component as computed by posterior probabilities.  

However, when the observed and estimated quantities presented in each panel correspond 

less than perfectly, the model values are more reliable estimates of the population 

because they avoid the errors made from classifying subjects using posterior 

probabilities.  Correlation and fit statistics to be evaluated below are also presented for 

each panel. 

 Many of the 2 x 2 contingency tables in Tables 21-25 are of three basic types 

described in Table 26.  Each of the three panels in Table 25 represent possibilities in joint 

performance, where the "X's" are used to denote a relatively large number of subjects and 

the "O's" a relatively small number of subjects.  When the two variables represent item-

sets consistent over Time, Type A of Table 25 suggests that Variables X (left side) and Y 

(top) are of approximately equal difficulty, while Type B suggests that Variable X is 

easier than Variable Y because there are a greater number of subjects classified as "high-



 102 

level" performers on Variable X and "low-level" performers on Variable Y than the 

reverse.  Likewise, Type C suggests that Variable Y is easier than Variable X.  

 Response Bias.  Panels B, D, J, and K of Table 21 all measure performance on 

Same vs. Different items, within Time and Item type.  Consistent with the univariate 

results, Panels B and D of Table 21 show that Same items are more easily solved than 

Different items for the original Shepard and Metzler (1971) items, but panels J and K 

show the opposite; that Different items are easier than Same items for the newer, more 

complex items.  One interpretation of this finding is that Old items evoke a "Same" 

response bias, while New items evoke a "Different" response bias. Panels B and D show 

a "same" bias on the Old items as seen in the fact that the π
12
  are all non-significantly 

different from 0 (all z's < 2.0, for instance in Table 21 Panel B, π̂
12
 = 0.005,  

SE( π̂
12
 ) = .011, z = 0.5), while the π

21
  are significantly different than 0  

(all z's > 2.0, for instance again in Panel B, π̂
21
 = 0.177, SE( π̂

21
 ) = .011, z = 16.4).   

This pattern of significance indicates that while there are a significant number of 

individuals who respond "Same" to Old-same and Old-different items, there are none 

who respond "different" to both Old-same and Old-different items.  This response pattern 

indicates a bias to respond "same" on the Old items by the individuals who perform at 

seemingly high levels on the Old-same items and low levels on the Old-different items.  

Panels J and K show a "different" bias on the New items in that the reverse pattern of 

significance is observed (that the π
21
  are all non-significantly different from 0, while 
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the π
12
  are significantly different than 0).  Again, this indicates that while there are 

individuals with a "different" bias on New items, there are none with a "same" bias. 

 Panels C and G of Table 21, which show joint performance on Old and New 

items would also be classified as Type C, corroborating the differential response bias 

interpretation.  The observed component memberships in these panels are consistent with 

subjects demonstrating a "Same" bias on Old items and a "Different" bias on New items 

in that subjects who respond "same" on Old items also respond "different" on New items.  

For the Old-same items this is a correct response, while on New-same items it is 

incorrect.  As a result these subjects perform at the "high" level on Old-same items and at 

the "low" level on New-same items. The fact that panel I of Table 21, which shows joint 

component membership on New-same items over time, is also of Type B, while panel L 

of Table 21, which shows joint component membership on New-different items over 

time, is closer to Type A, suggests that there is reduction in that bias over time as might 

be expected with learning. 

It was argued earlier that males' and females' performance is indistinguishable 

within component group.  If this hypothesis is true, then it should also be the case that 

males and females within these groups are indistinguishable in terms of their biases.  

Tables 22 and 23 provide the twelve 2 x 2 tables identified as Panels A through L with 

model estimates for males and females, respectively.  Males and females show the same 

response biases in Panels B, D, J, and K of Tables 22 and 23.  For example, Panel B of 

Tables 22 and 23 both indicate that π
12
 is non-significantly different from 0 (z

M
 = 0.1, 

z
F
 = 0.2, p's = n.s.), while π

21
  is significantly greater than 0 for both males and 
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females (z
M
 = 11.0, z

F
 = 7.4, p's < .05).  Panels D, J, and K are identical in terms of this 

bias.  In fact, the proportion estimates for the zero-valued cells are non-significantly 

different for males and females in all cases (all z's < 2.0, for example π̂
12

's from  

Panel B in Tables 22 and 23  are 0.001 and 0.025 respectively; z = -0.8, p = n.s.). 

 Improvement Over Time.  Panels A, F, I, and L in Table 21 provide information 

about the rate of improvement.  In this case, the τ
ab

's are of interest.  Recall that the  

τ ̂
ab
 estimate the proportion of the population in component a on variable X who  

shift to component b on variable Y.  For example, from Panel A of Table 21, of those 

individuals who performed in the "low" component on Old-same items at Time 1,  

τ ̂
11
 = 50.6% remained in the "low" component on Old-same items at Time 2.  

Additionally, τ ̂
12
 = 49.4% changed to the "high" component at Time 2.    

By the same token, only τ ̂
21
 =13.7% of subjects started in the "high" component at  

Time 1 and shifted to the "low" component by Time 2.  This panel shows that a 

significant proportion of subjects improved (testing the null hypothesis that τ
12

= 0,  

z = 3.9, p < .05).  Panel F of Table 21 shows performance on Old-different items, also 

indicating that subjects improved over time (z = 85.5, p < .05).  However, on Panels I and 

L, which shows improvement on New-same and New-different items, none of the 

transition parameter estimates which indicate improvement are significantly different 

than 0.  In other words, subjects improved on Old items, but not New items. 
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 As with the measure of response bias, male and female performance changes over 

time can also be compared.  Panels A, F, I, and L of Tables 22 and 23 indicate that male 

and female performance was similar to the overall pattern.  For Panels A and F, which 

show performance change for Old-same and Old-different items respectively, the τ
12

's 

are significantly different from 0 for both males and females, while for Panels I and L, 

the τ
12

's are not significantly different than 0 for either sex.  These results indicate that 

both males and females who began in the "low" component improved on the Old items, 

but not the New items.   

Males and females did not, however, improve identically.  As suggested by the 

univariate results in Chapter IV, more females changed from the "low" component to the 

"high" component.  By comparing π
12

Male
 with π

12

Female
 in panels A, E, I, and J 

(those panels which show improvement over time), only Old-different items (panel F) 

shows a significant difference (favoring females, z = 2.7, p < .05), indicating that the 

proportion of subjects who begin in the "low" component and finish in the "high" 

component is higher for females than males on the Old-different items, but no others.  

Interestingly, by comparing τ
12

Male
 and τ

12

Female
 in panels A, E, I, and J, there are 

no significant differences except on the Old-different items (Panel F) which favors males 

(z = 3.4, p < .05).  It appears that while a greater number of females show improvement, a 

greater proportion of males show improvement.  Because there are more females than 

males in the "low" component initially, their smaller proportion still proves to be a larger 

total number.  In order to examine this hypothesis further, the  π̂
12

's were summed  
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for both males and females to test whether there was any overall difference between the 

proportion of males and females who move from the "low" component to the "high" 

component across the four item-sets.  The total proportion of females who improved was 

0.69, while the corresponding proportion for males was 0.51 (z = 2.0, p < .05).  A similar 

gross measure of the rate of improvement can be estimated by examining the sum of the 

relevant transition estimates (τ ̂
12
 ) for males and females.  Results indicated that the  

average of the transition parameters in the cells which show improvement (the upper-

right cell in Panels A, E, I, and J) was higher, but not significantly so, for males than 

females (z = 1.2, p = n.s.).  While males and females improve at the same rate, more 

females change from the "low" to the "high" component over time because a greater 

proportion of females are performing at the "low" level initially. 

 Item Complexity.  The remaining panels, C, E, G, and H, feature bivariate 

performance on Old and New items.  These panels indicate that the New items were more 

difficult than the Old items in that the joint proportions (π
ab
 ) show a greater proportion 

of the population perform at the "high" level on the Old items and at the "low" level on 

the New items than at the "low" level on the Old items and the "high" level on the New 

items (π
21
 > π

12
 for all four panels, z's > 2.0, p < .05).  Again, males and females 

perform nearly identically in this regard.  Panels C, E, G, and H of Tables 22 and 23 

show that for both males and females, π
21
 > π

12
 , for all but males in Panel G.  In that 

case, both π
21
 and π

12
 are non-significantly different from 0. 

 Curriculum.  The effects of curriculum can also be evaluated in the bivariate 

setting.  Tables 24 and 25 provide bivariate model estimates for Penn State and Cooper-
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Union subjects, respectively.  Panels A, F, I, and L, which show improvement over time 

on the four Item-type by Item-status problem sets are the most relevant in assessing the 

effects of curriculum.  Comparisons of the π
12

, which indicate the proportion of subjects 

who demonstrate improvement, show that a greater proportion of Penn State subjects 

improve on Old-different and New-same items (Panels F and I; z's > 2.0, p's < .05), but 

not on either Old-same or New-different items.  The general improvement gains 

attributed to Penn State subjects in the univariate results appears to be the result of 

improvements on these two types of items. 

Summary-level Analyses 

 It was suggested in the previous chapter that the relationship between the two 

component basic-level models and the three component summary-level models could be 

understood in terms of how items were summed within subject.  That is, subjects who 

perform at the "low" level on both, say Old-same item at Time 1 and Old-different items 

at Time 1, would perform at a lower level on Old items at Time 1.  Subjects, however, 

who performed at the "high" level on one type and the "low" level on the other would 

perform at some "intermediate" level with a probability of success equal to the average of 

the "high" and "low" probabilities of success.  Uniformly "high" performers would 

perform at the "high" level on the combined set of items.   

These three kinds of performers would be seen in Panels B, D, J, and K of Tables 

21-25.  The proportion of jointly "low" performing subjects are represented by 

 π̂
11
 , "high" performers by the π̂

22
 , and the "intermediate" performers by the π̂

12
  

and π̂
21

.  As noted earlier though, these four panels fit either pattern B or C of Table 26.   
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In fact, any panel which fits patterns B or C (of Table 26) implies that there are, in effect, 

three joint components.  For example, panels B and D of Table 21 (which are of Type C) 

suggest that there are three "kinds" of subjects:  those who do poorly on both Same and 

Different items, those who do well on the Same items but do poorly on the Different 

items, and those who do well on both items.  There are very few subjects who are 

successful on the Different items and unsuccessful on the Same items.  This suggests that 

when Old items are examined independently of Same/Different Status, a three component 

model should best describe the data.  This was the primary reason behind the use of three 

component models to describe the summary-level items in the previous chapter. 

To test this hypothesis, membership in the four bivariate groups of Panel B (for 

Old-same and Old-different items at Time 1) were identified and compared with 

component membership for the three univariate summary-level components for Old items 

at Time 1.  The top panel of Table 27 provides frequencies for the cross-classification of 

component membership.  For example, Panel B of Table 21 shows that there were 38 

subjects jointly classified as "low" performers on both Old-same and Old-different items 

at Time 1.  Of those 38, Table 27 shows that 30 were at the "low" on Old items at Time 1, 

8 were identified as "intermediate" level performers, and 0 were at the "high" level.  The 

encircled frequencies represent the modal frequency for each column and indicate 

correspondence between the two model formulations.  A chi-square test of independence 

(between the two classification schemes) rejects a lack of association between the two 

models.  Table 27 clearly demonstrates how subjects in the bivariate two component 

model are partitioned in the univariate three component model. 

New-same and New-different items (panels J and K of Table 21) are similar in 

structure, but are more like Table 26's Type B.  The bottom panel of Table 27 compares 
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joint two component membership on Same and Different New items at Time 1 with 

Univariate three component performance for both New items at Time 1.  As seen in the 

table, there is a very high correspondence between component membership groups.   

Of course, part of this association is the result of the measurement scheme.  It 

would not be possible, for example, for an individual who performed in the "low" group 

on both Old-same and Old-different items to be in the "high" category on Old items.  

However,  the fact that a three component univariate solution provides a good fit and 

corresponds well to the bivariate model of performance lends additional credence to the 

notion that there are three different components when same and different items are 

collapsed.  There was no a priori reason to assume that the joint components would have 

this structure, and it is certainly not specified by the model in any way as seen in the fact 

that not all of the 2 x 2 tables can be classified as Types B or C.  While not provided, the 

correspondence is equally compelling at Time 2. 

 Three component bivariate models are presented for the summary-level Old and 

New item sets in Table 28.  The univariate estimates were taken from the restricted three 

component univariate models using all subjects.   Parameter estimates, standard errors, 

and cell frequencies follow the same format as the 2 x 2 tables.  Panels C and D of Table 

28 show performance over time for Old and New items respectively.  Consistent with the 

finding presented in Chapter IV,  subjects did improve significantly over time.   Summing  

π̂
12
 , π̂

13
 , and π̂

23
  to estimate the total proportion of subjects who  

improved over time (i.e., those who moved from a lower component to a higher one), the 

proportion of subjects who improved over time is significantly greater than 0 for both 

panels (for example from Panel B, π̂
12
 + π̂

13
 + π̂

23
 =  0.182, z = 4.5, p < .05).   
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While the proportion showing improvement for the New items is greater than the 

proportion showing improvement over the Old items, it is non-significantly so.  The 

univariate results, in contrast, demonstrated that subjects improved to a greater extent on 

the New items.  This result is most likely due to both the differences between the 

univariate and bivariate samples and the fact that the π̂
12
 values estimate gross  

increases in performance, while the π̂
2
 
(Time 2) 

- π̂
2
 
(Time 1)

 difference in  

Chapter IV estimates net performance increases. 

 Panels A and B reflect performance over Item type for Times 1 and 2 

respectively.  These panels measure the relative difficulty of Old and New items.  The 

proportion estimates from the cells which show improvement over time in Panels C and 

D (π̂
12
 , π̂

13
 , and  π̂

23
 ) indicate that the New items are more difficult than the  

Old items because there are no subjects who move from a lower component group on Old 

items to a higher one on New items.  Table 29 shows cells of Table 28 with τ
ab

 values 

significantly different from 0 (although Panel D - cell 3,1 - is non-significantly different 

from 0).  Table 29 defines the joint proportions of subjects on Old and New items (at 

Time X - either Time 1 or Time 2) who fall into these cells.  For example, those subjects 

performing at cell 2,1 are at the "intermediate" level on Old items and the "low" level on 

New items.  While there are two groups of subjects who perform at the "intermediate" 

level on the Old items, this cell is predominantly made up of subjects who perform at the 

"high" level on Old-same items and at the "low" level on the Old different items (see 

Panel B of Table 21, OS1 "high", OD1 "low" outnumber OS1 "low", OD1 "high" by a 10 

to 1 margin).  These subjects perform at one of three levels on the New items as 
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described by the transition parameter τ
2b

,  where b indicates which of the three New item 

components subjects are drawn from.  The only τ
2b

 significantly greater than 0 is τ
21

, 

indicating that the majority of subjects who perform at the "intermediate" level on Old 

items perform poorly on both New-same and New-different items.  The most common 

subject performances for the remaining four cells in Table 29 are identified similarly.  In 

effect, the specific pattern of  five nonzero τ
ab

's on the four Item-type by Item-status 

item sets (e.g. Old-same, Old-different, New-same, New-different) is apparent.  This 

pattern is consistent with a hierarchy of item difficulty, where New-Same items are the 

most difficult, followed by New-different items, Old-different items, and Old-same items 

which appear to be the easiest (see Figure 17).  Read from top to bottom and left to right, 

each of the five groups adds one more item set at the "high" level.  If a subject is likely to 

belong to the "high" category on any item set, it is the Old-same items.  If a subject 

belongs to the "high" component for only two item sets, it is the Old-same and Old-

different items.  Given the univariate results, which also show this pattern, this appears to 

be a robust finding.  However, because each cell of the 3 x 3 bivariate tables is made up 

of four subgroups, the relationships between variables are not as clear as it is when 

examining the bivariate basic-level item-sets.  As such, no other analyses will be 

conducted on the 3 x 3 tables. 

Correlation   

Correlations within the present model have a very different interpretation than the 

conventional bivariate normal correlation.  In the current model setting, the interpretation 

of correlations between two sets of items is the result of component membership, not the 

conventional linear structure seen in the bivariate normal case.  For each of the modeled 
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item-sets (i.e., panels) in Tables 21-25 and 28 three correlation values are given.  The 

first correlation value, identified as the raw score correlation, is the familiar Pearson 

product moment correlation between the scores on variables X and Y.  Panel A of Table 

21 shows the Pearson correlation between Old-same items at Time 1 and Old-same items 

at Time 2 as r = 0.205 (p < .001) indicating that the scores are correlated.  The second 

correlation presented, identified as the component score correlation, is r
φ
  a measure of 

the correlation between the dichotomous component scores for variables X and Y.  

Subject's scores were classified as having been drawn from the "low" component 

(component score = 1) or from the "high" component (component score = 2) and the 

component scores were correlated across the two variables X and Y.  In Panel A of Table 

21, the correlation between the component scores is r = 0.148 (p < .014) indicating that 

the component scores are significantly correlated across time for Old-same items.  It was 

argued earlier that component membership drives the correlation between the two 

variables X and Y, not the correlation between the raw scores per se.  The component 

score correlation estimates the effect of the components on the overall correlation.  

Appendix B outlines the model's expected correlation as a function of the proportion (π) 

and probability of success (θ) parameters.  When estimates replace parameters, 

ρ ̂  , measures the association between variables X and Y as predicted by the  

model.  For example, based on the univariate model estimates for Old-same items at 

Times 1 and 2, and the estimated transition parameters, the model predicts the correlation 

between X and Y to be ρ̂ = .102 (p = n.s.).  Estimates for all three correlations can be  

obtained and compared to one another.  If the joint model provides a sufficient 

description of the data, all three will be similar, especially the predicted model and the 
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observed raw score correlation. This is because the model correlation and the component 

score correlation both, in some sense, measure the association of the two variables X and 

Y as a function of the component groups.  If the raw score correlation is significantly 

larger than the model correlation, then the component groups cannot account for the 

observed relationship between X and Y.  If, on the other hand, the model correlation 

successfully predicts the observed raw score correlation, then the model gains added 

credibility.  Each of the three correlation coefficients in Tables 21-25 and 28 have 

superscripts A, B, or C to indicate significant differences.  Correlation coefficients with 

the same letter are non-significantly different from on another within each panel. 

For the majority of panels in Tables 21-25 and 28, the model correlation is in 

very close agreement with the raw-score correlation, indicating that the raw score 

correlation is due to the proportion of subjects within each latent class (and that the 

model is sufficient to make predictions about the data).  The component score correlation, 

which takes into account only the correlation of the latent class levels also closely 

approximates the observed raw-score correlation for nearly all of the contingency tables. 

Almost without exception, the three measures of association are in close correspondence, 

even though significance tests do detect a greater number of differences than would be 

expected by chance.   

The joint model used here also predicts that within each of the joint components 

the correlation between the two item-sets should be 0 as a consequence of local 

independence; a feature common to latent class models.  Local independence specifies 

that within each joint component, all variance is random error, thus the correlation 

between the two joint variables is zero.  This sometimes counter-intuitive notion can be 

explained by the following example.  Consider voting behavior for U.S. Senate and 
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Representatives.  Were a random sample of the voting population taken, the correlation 

between these two variables would probably be very high.  However, if a latent variable 

like political affiliation were found, one might expect that within each level of the latent 

variable (liberal and conservative), the correlation would disappear.  That is, when only 

liberals are examined, there would likely be no correlation between Senate and 

Representative votes.  Most liberal individuals would presumably vote democratic in 

both races, and idiosyncratically for either mixed or solely republican candidates.  In 

effect, the correlation is caused by the levels of the latent variable.  The same should be 

true with regards to mental rotation performance.  Within each component group, the 

correlation between items should be zero, while the correlation of the groups (component 

score) should estimate the raw-score correlation between the variable pairs.  

 The within component correlation between scores on task A and B can be 

evaluated to test this.  For example, from Panel A of Table 21, 32 subjects were jointly 

classified as performing at the "high" level on both Old-same items at Time 1 and the 

"low" level on the Old-Same items at Time 2.  The number of items correct on the Old-

same items at Time 1 can be correlated with the number of items correct on the Old-same 

items at Time 2 for these 32 subjects (in this case, the within component correlation of 

performance on Old-same items at Time 1 and Old-same items at Time 2 is r = 0.201, p = 

n.s.) and each of the other remaining 47 joint cells in Panels A-L of Table 21.  These 

correlations are typically non-significantly different from 0, as hypothesized.  Figure 60 

provides a funnel graph of the within cell correlation coefficients. The graph gets its 

name from the funnel-shaped + 2 standard error region.  The standard error lines are 

curved because as sample size increases, smaller and smaller r values become 

significantly different than 0, using Huber's (1977) distribution-free result.  The interior 
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area of the funnel graph depicts correlations non-significantly different than 0, while 

points falling outside of the funnel are significantly different than 0.  As seen in the 

figure, there are a few correlations which do fall in the region of significance (outside the 

funnel).  However, the small number of violators indicates that within cells, most of the 

variance is simply random error and that the model is on the right track. 

Model Fit   

The top panels of Figures 51-53 show observed joint frequencies, while the 

bottom panels show frequencies expected under the bivariate model.  The close apparent 

correspondence between the two suggests that the bivariate mixture model provides an 

excellent description of the data.  Observed and expected values appear to correspond 

very closely.  The usual method of assessing model fit in this type of joint setting 

involves some kind of χ
2
 goodness-of-fit procedure.  The two χ

2
 statistics used in the 

previous chapter become problematic in the current setting, however, because a large 

number of observed and expected frequencies less than 1 in the mx x my celled joint 

frequency histograms (see Figures 51-53).  Commonly, adjacent levels of the variables 

are pooled together so that frequencies are sufficiently large to permit the Pearson χ
2
 

goodness-of-fit test.  While these fit statistics are not presented, the majority reject the 

bivariate mixed binomial model.  However, there is some recognition that what appears 

to be a close relationship between a model and data can be rejected by χ
2
 fit statistics, at 

least in tests of independence (Diaconis & Efron, 1985).  Diaconis and Efron (1985) 

argue that with sufficient power, virtually all models will be rejected using standard 

hypothesis testing techniques.  The rejection of a model based on a  χ
2
 test statistic does 
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little to assist in finding a correct alternative, and often the alternatives are less well 

supported by the data.   In other words, while a specific model may be rejected, it can still 

be both the most appropriate and the most useful model for the data.  For this reason, and 

because so many of the mx x my cells have values less than 1,  an alternative method of 

computing χ
2
 was used.  Thomas (1977) suggested that when both the observed and 

expected frequencies are less than 1 for a given cell, that cell's contribution to the χ
2
 test 

statistic should be negligible because of the agreement between observed and expected 

values.  Following this approach, the χ
2
 test statistics employed here were modified such 

that if both the expected and observed frequencies for a cell were less than 1, then the cell 

χ
2
 was set to 0.  The degrees of freedom remained unchanged.  

Adjusted Pearson goodness-of-fit and likelihood ratio chi-square statistics are 

presented with their associated degrees of freedom for each of the joint models in Tables 

21-25 and 28 below the panels containing the bivariate parameter estimates which 

generated the fit statistics.  The adjustment for small cell values precludes referencing 

computed χ
2
 values to tabled critical values, but from an intuitive perspective, the overall 

fit of the models appears satisfactory.  In many cases, for example Panel F of Table 21, 

the test statistic is approximately equal to the degrees of freedom, indicating a close 

correspondence between the model and the data.  In many cases, however, the joint 

binomial mixture models are rejected at the α = 0.05 level.  However, given the relative 

power of these tests and the apparently high correspondence between the observed and 

expected frequencies in Figures 51-53 the data fit remarkably well. Certainly the fit is 

better than many alternatives, such as the commonly used bivariate normal model. 
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Summary 

 The joint binomial mixture model provides interesting insights into the nature of 

mental rotation performance.  The 2 x 2 tables which detail performance on the basic-

level item-sets suggest that when Same and Different items are combined, there are three 

kinds of performers, lending support to the evidence for three components found in the 

univariate analyses.  These joint tables also serve to illustrate an as yet unexplained 

response bias that differs for Old and New items.  Additionally, the joint model supports 

the pattern of sex differences over time seen in the previous chapter.  The joint model 

also successfully predicts the observed correlations between item sets, yet explains them 

in a very unconventional way.  These findings are interpreted in detail in the following 

chapter. 
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CHAPTER VI 

 

Discussion 

 

 The model presented above takes the two component joint mixture model posited 

by Thomas and Lohaus (1993), expands it to fit three components jointly, and applies it 

to longitudinal data.  In addition, the model is applied to two types of items (Old and 

New), and by examining response type (same or different), illustrates the importance of 

gender and curriculum on mental rotation performance changes over time.  The major 

findings of the current study suggest that a two component mixture of binomials model of 

performance best fits the item-sets which differentiate between same and different items. 

The model finds fairly consistent but not identical probability of success estimates for 

each component or latent class across curriculum (Penn State/Cooper-Union), Sex 

(Male/Female), Item-type (Old/New), Item-status (Same/Different), and Time (1/2).  

When items are collapsed over the Same/Different variable, a three component model 

best captures performance.  While the mixture often provides a less than ideal fit, it is a 

substantial improvement over the normality often assumed for these kinds of data.  

Evidence supporting a latent class view of mental rotation performance is consistent with 

a growing body of literature suggesting that there is something fundamentally unique 

about spatial cognition in this regard (Thomas & Lohaus, 1993). 

 One might, however, argue that the model had not fulfilled its promise, that the fit 

was somewhat less than stellar, and that perhaps, since it had not been uniformly 

accepted, it should be entirely suspect.  Like any model of performance it has its 
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shortcomings.  Furthermore, the large sample sizes presented here give tests so much 

power that any model will be rejected.  In many ways the model used here is exploratory.  

Still, it is a better way to view performance on mental rotation tasks than the alternative 

normal distribution models.  Clearly, while the mixed binomial does not fit perfectly, to 

argue that its fit is imperfect is to simultaneously argue for the rejection of the normal 

model because while the mixed binomial model is not perfect it certainly appears much 

closer to reality than any normal model.  While conclusions based on the mixed binomial 

may be less than certain, conclusions based on the normal model are even more so.  The 

mixed binomial model is more believable than the normal based models because it seems 

to capture the spirit of the data:  for any given set of items there are two "types" or 

"kinds" of performance.  One of the most useful features of the model is that it can help 

guide thinking about performance-related issues. 

The use of the word "types" or "kinds" has been used to refer to individuals, but it 

is probably best applied to performance, rather than performers.  In the present context 

the latent class terms do not imply that each person could have a stamp placed on the 

forehead describing them as "high" or "low" ability subjects because individuals often 

perform at a "high" level on "same" items and a "low" level of "different" items or vice-

versa depending on the complexity of the items.  The terms might be more accurately 

characterized as "states" or "performance levels" that are likely related to strategies or 

problem solving methods (perhaps more nebulous and less conscious than a strategy).  

The components of the mixture model describe two "performance levels" when the item 

status (i.e., "same" vs. "different") is taken into account, and that proportion differences 

are the most important (i.e., the state in which a subject performs for a given type of 
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mental rotation problem).  Because this model better describes performance than those 

traditionally employed, it should lead to better evaluation of psychological theories of 

mental rotation performance. 

 In general, between group differences are the result of differences in the 

proportions of subjects belonging to each latent class (π's), not differences in 

probabilities of success (θ's) which are generally consistent across item-sets.  For 

example, sex differences were characterized by a larger percentage of males than females 

in the highest performance group and a lesser number of males than females in the lowest 

performance group (see Tables 5-8 and Figure 25).  Penn State and Cooper-Union 

subjects perform at generally equivalent levels, although Penn State subjects did appear 

to improve more over time than Cooper-Union subjects, at least on some items (see 

Figures 20 and 22).  Subjects were more accurate on the Old items taken from the 

Vandenberg and Kuse (1978) mental rotation task than they were on the newer, more 

complex items, as expected.  This difference was manifested in the large proportion 

differences in "high" component membership between Old and New items (see Figures 

17-19).  Finally, there was a uniform improvement in performance over time for Penn 

State subjects, especially the females (see Figure 22). 

 When compared on different achievement measures, subjects classified as "high" 

performers were similar to one another regardless of sex, as were those classified as 

"low" performers (see Tables 11-16).  Likewise there were no within component 

individual differences with regard to accuracy over different rotation angles (see Figures 

36-40). 
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 The modeling framework for understanding mental rotation performance 

presented here provides a means for integrating many previously unrelated or seemingly 

contradictory findings in the literature.  Lohman and Kyllonen (1983) argue that no good 

models of individual differences in spatial abilities exist.  This model attempts to fill that 

gap by providing interpretations for varied empirical findings.  The discussion focuses 

primarily on the hypotheses outlined in Chapter I, beginning with the issue of 

performance change over time.  The issue of stimulus complexity is considered next, 

followed by strategy-related issues. 

Performance Change over Time 

 The model presented here could have found performance change to be the result 

of (1) consistent probabilities of success (θ) paired with changing proportion (π) values, 

(2) changing probabilities and constant proportions, or (3) jointly changing probabilities 

of success and proportions.  Each implies different processes governing change.  The first 

alternative appears to be the most likely.  The probability of success estimates are largely 

consistent over time, but fluctuated across item-sets.  Although not as consistent as had 

been assumed, the θ-estimates do not appear to vary in any systematic fashion.  The 

variability of the θ̂'s was undoubtedly due in part to a failure of the model  

assumptions concerning the consistency of trial to trial success rates.  However, the 

probability of success estimates are still fairly similar within a component group, while 

the proportion estimates appear to change in ways consistent with hypotheses.  The 

bivariate binomial mixture model of performance presented here describes performance 

change in terms of transition parameters which describe shifts in component membership.  

Individuals within each of the two or three latent classes at Time 1 are associated with a 
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probability of either changing performance groups or remaining in the same performance 

group at Time 2. Were performance changes the result of small changes in probabilities 

of success, the joint model would not have fit as well as it did.  

 The fact that performance improved over time supports the idea that training was 

effective.  From a psychological perspective, the question of which curricula evokes the 

most improvement is moot.  It would be expected, based on numerous studies which find 

a link between study in engineering and mental rotation performance, that both would 

improve (e.g., Brinkman, 1966).  Of most interest is how and why subjects improve, and 

whether that improvement is constant across item complexity (item type) and item status 

(same/different status). The issues of how and why are addressed in this section. 

 The fact that the training phase did not center on the kinds of items used at test or 

retest fails to support Olson and Bialystok's (1983) description of spatial cognition.  

Olson and Bialystok (1983) argue that improved spatial performance requires that the 

parts of objects be lableable, which is not likely in this case here.  Because training did 

not focus on the same objects used during testing, it seems unlikely that the test items 

became substantially more familiar to subjects, though it is possible that subjects' ability 

to provide labels for abstract, unfamiliar objects improved with experience.  On the other 

hand, Piaget's notions of more general operations, which require the conservation of 

length and angle and an internalization of an object's permissible transformations (i.e., 

invariance of angle and length) are better suited to explain the current data.  The abrupt 

nature of performance change is more consistent with Piaget's theory.   

 The data  do not provide unconditional support for Piaget's theory, however.  As 

with the water-level task, many adult subjects appear to lack the operations required to 
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solve problems of imagery yet these should be evident by the end of concrete operations.  

Piaget was less specific about mental rotation issues than issues of horizontality and 

verticality, but the two are certainly related.  One interpretation for less than optimal 

performance on this task is that subjects lack operations concerning invariant properties 

and reversible displacements of the rotation items.  

In contrast to Piaget's conception of performance change, Lohman (1990) argues 

for a gradual accretion model of performance on mental rotation tasks.  Model results 

here are at variance with this hypothesis.  One reason for this apparent contradiction is 

that Lohman (1990) presents averaged data which do show gradual improvements over 

time.  As Brainerd (1993) argues, average data can be very misleading because abrupt 

performance shifts by individuals will often appear to be gradual transitions when data 

are grouped. 

 The evidence which suggests that subjects identified as "high" and "low" level 

performers at time 1 differ on achievement tests would lead to the expectation of an 

Aptitude by Treatment Interaction of the kind specified by Kyllonen et al. (1984) and 

Cooper and Mumaw (1985).  Such an effect, however, was not observed.  For this to 

have occurred, the better subjects would have shown an improvement in their probability 

of success estimates, while the poorer subjects would not.  According to the results of the 

unrestricted models, the higher performing subjects had the most consistent probabilities 

of success, while the poorer performing subjects had the most variable (and not always 

higher) probabilities of success over time.  The fact that improvements in performance 

were seen as shifts in component membership makes the idea of a mental rotation  

aptitude by treatment interaction very unlikely. 
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Stimulus Complexity 

 Consistent with previous research which shows that item complexity adversely 

affects accuracy, the newer, more complex items showed lower average accuracy rates 

than the old items.  However, this effect was not uniform across all component groups.  

The joint frequency tables (Tables 21-25) are useful in understanding the relationship 

between complexity and accuracy.  For example, Panels C, E, G, and H of Table 21 show 

joint performance on Old (simpler) and New (more complex) items.  Panels C and E, 

which show performance on Old- and New-same items indicate that New-same items 

were more difficult to solve.  Many subjects with near ceiling accuracy on Old-same 

items were performing at the "low" level on New items.  Panels G and H, however, show 

more consistent performance on Old-different and New-different items.  The joint model 

suggests that subjects who succeed on Old-different items are also successful on New-

different items.   

The data reveal an interaction between item complexity and item-status such that 

new-same items are the most difficult (see Figure 28 and Panels B, D, J, and K of Table 

21). Hochberg and Gelman's (1977) finding that landmark features improve accuracy 

provides one possible reason for this result.  It would appear that New-different items 

would have more distinctive features than New-same items.  Subjects may use a strategy 

whereby they respond "different" to an item if visible landmarks are absent because the 

target and comparison items are more likely to be different. This strategy would cause 

them to erroneously identify some "same" items as different when items are more 

complex because of limitations in working memory.  Because the Old items lack the 
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same number of potentially distinctive landmark features, Hochberg and Gelman's (1977) 

findings might also explain why Old-different items are not easier than Old-same items.  

 Complexity effects are not universally found (e.g. Cooper, 1982; Yuille & 

Steiger, 1982).  Results here suggest that this may in part be due to sampling differences.  

The highest level performers were unaffected by complexity (as were uniformly low 

performers), yet intermediate level performers were strongly affected by complexity.  

This result is due to response bias changes over item-sets of varying complexity, and will 

be discussed in more detail below. 

Strategy Use 

 Lohman and Kyllonen (1983) argue that a model of mental rotation performance 

must take into account the fact that subjects may use different strategies for different 

tasks.  The current model suggests just how this might be characterized.  While the 

particular strategies subjects use are not directly penetrable, different strategies do imply 

different rates of success across the different item-sets, and different strategy groups 

imply a latent class structure.  While the existence of latent classes does not provide a 

logical basis for assuming different strategy groups, there are enough effects consistent 

with strategy use to suggest a correspondence between the two.  Further, the results 

discussed below provide reason to believe that each of the latent classes of performers are 

using different strategies.  It would be very unlikely (although admittedly possible) that 

different strategies would lead to similar probabilities of success.  In addition, the latent 

class structure of mental rotation performance found here can rule out certain strategies. 

 For example, it was originally hypothesized that the lowest component of a three 

component model would be associated with a guessing strategy and have a probability of 
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success of about .50.  This appears not to have been the case.  In addition to the fact that 

the low performers' probabilities of success are significantly larger than .50 for nearly 

every item-set, histograms of within component item accuracy (Figures 41 and 43 - the 

worst fitting examples) show that response accuracy is not focused at .50.  Subjects 

appear to be responding  below chance on some items at about the same level as 

intermediate-level performers on others.  This finding is consistent with evidence 

provided by Just and Carpenter (1985) who found four discrete strategies. The lowest 

performing subjects in their study rotated objects about three axes sequentially.  This 

strategy is consistent with the current data which suggest that the summed rotation angle 

over all three axes distinguishes the two clusters of Figure 43, with more difficult items 

(left-most cluster) averaging larger trajectories. This finding is also consistent with 

Lohman and Kyllonen (1983) in that the lowest performing subjects may shift strategies 

within item-set.  In other words, the fact that the θ
1

-estimates were so much more 

variable than the θ
2

-estimates could be the result of subjects changing strategies on, for 

example, Old-same items.  The fact that the items of each set were mixed when presented 

further supports a strategy shifting hypothesis.  

 It also appears that something related to strategy use affects performance when 

item-sets are collapsed across the Same/Different variable.  Subjects respond as if they 

have a  "same" response bias on the Old items and a "different" response bias on the New 

items.  This bias is only apparent for one of the three latent class groups (or one of the 

four in the two component bivariate setting).  There is one set of subjects who perform at 

near ceiling rates on both Old and New items and another group that performs at very 
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low levels regardless of the item-type.  The intermediate-level performance group does 

well on the one type, but not the other.  

This response bias may be caused by a feature-matching strategy.  The pattern of 

response bias seen in Panels B, D, J, and K of Tables 21-25 is also consistent with a 

feature matching or piecemeal rotation strategy.  Subjects using either strategy might be 

more likely to identify more complex (New) items as different based on visible features, 

even when the items are the same, by confusing the features of the target and stimulus 

items.  Carpenter and Just (1978) have shown using eye fixation data that as mental 

rotation items become more complex, some subjects fixate on non-corresponding target 

and stimulus segments.  As a result, as segments become confused, and subjects are more 

likely to respond "different" to same items.   This was exactly the pattern found here.  

With increased item complexity, one sub-set of subjects was more likely to respond 

"different" to same items.  When the items were less complex, however, subjects were 

more likely to provide incorrect "same" responses.  Carpenter and Just (1978) also argue 

that incorrect "same" responses are the result of a failure to identify segments which 

distinguish targets and stimuli. For example, there are relatively fewer distinguishing 

features on the original (Old) items, so subjects looking for landmark features and not 

finding them may assume that the items require a "same" response.  Because the less 

complex Old items have fewer features to compare and the features are more similar to 

one another than they are for the more complex New items, subjects' "same" bias on the 

Old items is consistent with their interpretation.   In essence, the data presented here 

argues that subjects showing response biases are rotating stimuli in a piecemeal fashion.  

In contrast, those who performed at the "high" level on both items (for all four panels), 
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show no response bias and are likely to have used holistic rotation strategies.  In addition, 

subjects of both sexes appear to have shown these patterns. 

 The findings presented here argue that subjects generally use the same strategy 

across trials, but that these strategies are not equally effective for all items.  For example, 

feature-matching strategies should be more successful on Old-same items than on New-

same items because there are fewer features to confuse on Old items.  The larger number 

of features on the New items may make it difficult for subjects using either feature 

matching or piecemeal rotation strategies to keep the features straight.  Subjects' 

confusion of features on the New items is one likely cause of a "different" bias on these 

items that is absent on the "same" items. 

Strategy Use and Rotation Angle 

 All conclusions about angle of rotation must be made with caution since there 

was no systematic manipulation of rotation angle and each object was rotated on more 

than one axis.  As a result, analyses of the three orthogonal axes of rotation are always 

confounded by rotations along the remaining axes.  Furthermore, because there are no 

unique solutions for sequential rotations about three axes, subjects may have used 

trajectories other than the ones used in this analysis.  As a consequence, the summed 

rotation angle (of the three orthogonal axes) can be different depending on the order of 

rotation axes used to solve for the angular deviations.  With different orders, rotation 

angle about each axis is changed, as is the sum of the three angles.  The object-defined 

axis is unique and can be used with more confidence, but caution must still be used 

because there is little evidence to suggest which subjects, if any, may have used this axis.   
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 While many authors (e.g., Shepard & Metzler, 1971) have demonstrated that 

reaction time is affected by rotation angle in good performers, it does not appear that 

accuracy is affected to any great extent.  Accuracy for the highest level performers in the 

current study were not obviously affected by rotation angle, which suggests that they 

were able to holistically rotate the items.  Bethel-Fox and Shepard (1988) argue that 

complexity affects mental rotation in proportion to how well the rotation image is 

integrated into a unified whole.  Additionally, these authors argue that high spatial 

subjects provide evidence for more effective encoding of spatial information than low 

spatial subjects.  The fact that highest component group's accuracy was unrelated to 

rotation about the object defined axis, even when they use this axis, can be accounted for 

this way (see Figure 32).  Conversely, subjects in the lowest component, who are the 

least likely to use an object-defined axis, would also not be expected to have accuracy 

correlate with this measure of angular deviation.  The fact subjects from both components 

showed little relationship between accuracy and rotation angle is probably related to the 

unusual measures of rotation angle in this study. 

It is easy to imagine that "different" items would be easier to distinguish from one 

another (as they are for the intermediate/poor subjects who may use a feature matching 

strategy), but not if a rotation strategy is used.  For the highest level performers it also 

seems to be the case that same and different items are equally difficult, which also 

suggests a rotation strategy.  Because the features are different for "different" items a 

feature-matching strategy implies different performance levels for "same" and "different" 

items. It appears that "high" component subjects use a consistent algorithm (e.g. Kail et 

al., 1984)  for all problems since subjects do not know until the end of the algorithm 
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whether items will turn out to be the same as or different from the target (in the 

comparison phase).  Carpenter and Just (1979, cited in Kyllonen et al., 1984) used eye-

fixation data to differentiate subjects who use sequential rotation (piecemeal) strategies, 

and found that they have higher error rates than subjects who use holistic rotation 

strategies.  Furthermore, Tapley and Bryden (1977) found that accuracy decreased with 

degree of stimulus rotation. Bethel-Fox and Shepard (1988) argue that longer rotation 

times result in a degradation of the to-be-rotated mental representation.  Consequently, 

image degradation hurts those who rotate figures on a part-by-part basis more than those 

who do so holistically.  High ability subjects' performance is not affected by increases in 

the angle of rotation about an object-defined axis partly because rotation strategies 

require less time to implement, and are thus less sensitive to the image degradation.  

Intermediate subjects, who performed well on some item but not others, were unaffected 

by rotation angle, suggesting that they used a feature-by-feature comparison strategy.   In 

addition, it is more difficult to keep track of the individual pieces when image degrades, 

so part-by-part comparisons are even more difficult. Cooper and Mumaw (1985) argue 

that low ability subjects lack the ability to maintain mental images long enough to 

successfully transform them over multiple partial rotations.   

Alternatively, these findings could be taken as evidence in favor of Lohman's 

(1986) research on speed-accuracy trade-off curves.  It is conceivable that the higher 

level performers are a the top of the speed accuracy curve, in that the time provided them 

was more than sufficient to complete all items without sacrificing accuracy.  While the 

task was not timed, it is possible that the less able subjects imposed their own deadline, 

hurried their performance, and became less accurate as a result.  This becomes especially 
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possible given that the data were collected in a group setting.  While it was one of the 

specific aims of this study to collect mental rotation data that were not influenced by 

solution time, the likelihood that some students saw their peers finishing and felt 

compelled to compete is a realistic concern.  In effect, this may have become an untimed 

task for the better performing subjects and a timed one for the less able subjects.  While 

their accuracy was not dependent on rotation angle, the subjects from the lowest 

component may have been at one of the lower points on the speed-accuracy curve.  

 Strategy and Complexity 

 Many authors have theorized that as items become more complex, the number of 

observed strategies should increase (e.g. Kyllonen et al., 1984).  No support for this 

hypothesis was found. The fact that a two component model fits both Shepard and 

Metzler (1971) and more complex items equally well when same and different items 

were examined separately and a three component model fits both well when same and 

different items were examined together is compelling evidence against the notion that 

item complexity breeds an increased number of strategies for subjects.  Complexity did 

appear to impact subjects' strategies, however. 

 Just and Carpenter (1985) found that high and low spatial ability subjects used 

different strategies for solving mental rotation items.  While high spatial subjects rotated 

holistic mental images, one strategy common to those subjects with higher error rates was 

a piecemeal rotation strategy.  Because subjects are thought to use non-holistic strategies 

as a result of inferior quality mental images, complexity should differentially increase 

error rates for this group.  In fact, complexity effects should only be seen when either 

piecemeal or propositional strategies are used, but not rotation strategies (Bethel-Fox & 
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Shepard, 1988; Folk & Luce, 1987).   Pellegrino and Kail (1982) argue that the likelihood 

of correct responses is directly related to the number  and type of processing operations a 

task requires.  For a holistic mental rotation strategy the operations are constant from trial 

to trial, as is the resulting probability of success (and therefore component group).  For 

subjects who use piecemeal rotation strategies, the number of required rotations increases 

with item complexity.  An increase in the number of operations increases the likelihood 

of an incorrect response because there are more opportunities for error, and a single 

process error will cause an incorrect response.  Additionally, Cooper and Mumaw (1985) 

argue that subjects with lower quality mental images show a greater number of erroneous 

"same" responses.  As a result, performance drops (from θ̂
2
 =  0.9336 to 

θ̂
1
 = 0.6283) as complexity increases for those who use piecemeal rotation strategies.   

These hypotheses are consistent with the data found here. As expected by 

theories which posit analog mental rotation strategies (e.g., Shepard & Cooper, 1982), 

one sample of performers remain unaffected by complexity as would be expected if a 

holistic rotation strategy were being used.  If a non-rotational feature matching strategy 

were used by the intermediate level performers (i.e., subjects whose joint categorization 

indicated "high" levels of performance on one task and "low" levels on another) their 

strategy might be expected to have differential impact on Old and New items which differ 

in complexity.  Evidence from the current study is consistent with this hypothesis in that 

the proportion estimates for complex items are lower for New items than they are for Old 

items.  In fact, this hypothesis implies that a proportion of individuals performing at 

"high" levels on the Old items will fall into the low level group when they attempt the 



 133 

New items, as was found.  Subjects identified as intermediate-level performers manifest 

complexity effects with a differential response bias for Old and New items.  Panels B and 

J of Table 21 show that the intermediate-level subjects respond as if they have a "same" 

response bias on the Old items, and a "different" response bias on the New items. The use 

of both part-by-part and holistic rotation strategies is consistent with the current results. 

 Old items have fewer features to match and often the features are very similar 

even when the items are different.  As a consequence, subjects using a feature matching 

strategy might be expected to respond "same" regardless of whether the items were the 

same as or different from the target.  A feature matching strategy, therefore, would likely 

generate more "same" responses than a rotation strategy for Old items.  In other words, a 

feature matching strategy would predict, that Old-same items were easier than Old-

different items.  Subjects using this strategy, however, would be more successful on 

items different enough to have visibly or remarkably different features.  There would be, 

however, relatively fewer of these items on the original Shepard and Metzler style items 

than in the set of newer, more complex items.  As a result, these subjects would also be 

expected to perform better on Old-different items than on either New-different or New-

same items because there are fewer features to confuse on Old-different than on New-

different items.  Furthermore, subjects using a feature matching strategy would also be 

likely to show better performance on New-different items than New-same items because 

the New items have a large number of features which become confused.  This is because 

both New-same and New-different items are likely to generate "different" responses 

when the same feature on an item and its target are confused.  For the New-different 

items this is a correct response, but for the New-same items it is incorrect. Further, New-
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different items were more easily solved than New-same items because complexity makes 

features more readily identifiable than in comparison to Old-different versus Old-same 

items which have fewer features to distinguish them. 

 It is also possible, that subjects change strategies depending on whether they are 

attempting Old or New items.  Kyllonen et al. (1984) point to a range of results which 

suggest that subjects often change strategies across tasks.  Lohman and Kyllonen (1983) 

provide evidence which indicates that some individuals use rotational strategies on less 

complex items and analytic strategies when item complexity increases.  The pattern of 

results in Panels C and E of Table 21 indicate that the differential response bias found in 

this study could be explained if the intermediate-level subjects were changing from an 

effective rotation strategy for the Old items to a less effective part-by-part strategy for the 

New items as the result of increased complexity.  Unfortunately, there is no evidence 

available here to distinguish these possibilities. 

Strategy Change Over Time 

 Panels B, D, J, and L of Table 21 indicate that the same/different response biases 

were slightly reduced over time.  Over time, subjects for the intermediate groups seem to 

migrate to the highest-level component.  While there is no direct evidence that subjects 

can respond to strategy change over time, the reduction in the numbers of subjects who 

have a differential response bias suggests that strategies do change over time.  The model 

also suggests that these changes are abrupt in the sense that they are the result of 

component membership changes, which are more likely the result of strategy shifts than 

incremental refinements in existing strategies. 
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  Linn and Petersen (1985) point out that females are more likely than males to use 

part-by-part rotation strategies and that sex differences are smallest on tasks which 

require their use.  If females are more likely to adopt a piecemeal rotation strategy, then 

sex differences should be largest on the most complex items.  The current data show this 

to be the case at Time 1:  The largest sex differences in performance were seen on the 

New items (see Figures 14 and 16).  By Time 2, however these differences were 

significantly reduced.  The fact that latent class membership changes were responsible for 

this reduction implies that change over time was the result of strategy shifts on the part of 

lower level performers.  Although it is also possible that subjects simply became more 

efficient in their implementation of part-by-part rotations as suggested by Lohman and 

Nichols (1990) this explanation seems less consistent with the data. 

Sex Differences 

 As has been found in other spatial tasks (e.g. Thomas & Lohaus, 1993) there 

appear to be multiple discrete groups defined by performance level.  Sex differences 

reside not in the performance levels that define the mixing distributions, but in the 

differences in relative proportions of males and females within those distributions.  

Although the terms strategy and algorithm are not necessarily interchangeable, Kail's 

thesis that there are no sex differences in the algorithms used to solve mental rotation 

problems must be modified to admit that there are no sex differences in the algorithms 

used to solve mental rotation problems within a given latent class.  Consistent with this 

view, males and females were not different on achievement tests (see Table 10), but high 

and low performance groups were (see Tables 11-17).  However, this may partly the 

result of the unique sample here.  Engineering students of both sexes are academically 
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superior, especially in math and sciences, to the general student body.  A broader sample 

of the population would probably have shown greater sex and component differences. 

 Further, the notion that the locus of sex differences is in reaction time is pervasive 

(e.g. Lohman, 1986).  The current dataset suggests that this conclusion is unfounded.  

Many of the studies which suggest this use much simpler two-dimensional rotation 

stimuli.  The much higher accuracy levels reported by Kail et al. (1979) are probably due 

to the fact that the tasks administered here are much more difficult. Tapley and Bryden 

(1977), for example, note both accuracy and reaction times show significant sex 

differences, with males "on average" more accurate than females.  Were data from the 

current study analyzed using traditional analysis of variance techniques, the same 

conclusions would have been drawn.  However, the mixture model clearly shows that sex 

differences in accuracy result from component membership differences.  The much more 

interesting question revolves around component group differences.  In addition to sex 

differences in accuracy, Tapley and Bryden (1977) found a greater number of male 

"visualizers" and female "verbalizers," but no significant differences in terms of accuracy 

between strategy groups.  One explanation for this was the relatively low proportion of 

women performing at the "high" level in their sample.  This conceptualization agrees 

with Paivio's (1971) finding that imagery skill predicts spatial performance for males, but 

not females. 

 Kail et al. (1979) suggest that a significant subset of females employ a piecemeal 

rotation strategy because their rotation times are slower by a whole number factor (as 

opposed to some fractional number) than males' times.  Current results suggest both 

males and females (but a higher proportion of females) use this strategy.  It should be the 
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case, for example, that if subjects are partitioned based on their accuracy scores, the 

within sex reaction time differences should be greater than between sex differences 

within latent class.  This hypothesis seems especially plausible given that Thomas and 

Kail (1991) found support for similar latent classes of mental rotation reaction times in 

both men and women. 

 The fact that no within component sex differences were found on the 

achievement test scores (Tables 11-16), accuracy rates across increasing rotation angle 

(Figures 36-40), or in the response patterns in the bivariate data pairs (Tables 22 and 23) 

supports the position that the most important differences are within rather than between 

sex.  Liben (Sholl & Liben, 1995; Vasta & Liben, 1996) has argued, however, that at 

least on the Piagetian Water-level task, subtle differences may exist between males and 

females of the same latent class.  This contention is likely true for mental rotation tasks as 

well.  The fact that females' data were better modeled by the restricted two component 

model is evidence in favor of the notion that males and females may differ slightly even 

though their performance is quite similar.  As noted earlier, however, the point is not that 

males and females are identical within latent class, but that their performance is almost 

indistinguishable, suggesting that their methods of solving mental rotation problems is 

also similar.  As such, one would expect similar strategies and processing algorithms to 

be used.  The current evidence supports such a contention.  Again, while similar 

probabilities of success (θ's) for males and females does not entail similar problem 

solving strategies, it is consistent with this hypothesis.  Furthermore, it is very difficult to 

imagine that two radically different strategies would provide such similar probabilities of 

success. 
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 While there was no overall difference in the rate of improvement for males and 

females (Figure 21), Penn State females' superior improvement (Figure 22) suggests a 

Sex by Treatment interaction similar to the one hypothesized but not supported by 

Baenninger and Newcombe (1989).  Figure 61 provides a copy of their model of two 

potential Sex by Treatment interaction outcomes in the upper panel, and an alternative 

view in the lower panel which supports their hypothesis and the current data.  While 

Baenninger and Newcombe (1989) view increases in spatial ability as ending abruptly 

after a certain level of experience, perhaps the logarithmic curve in the bottom panel 

might present a more realistic view of learning.  The data presented in Chapter IV show 

that while both males and females improve, females who received the intervention 

improved to a greater extent.  This condition is not possible in Baenninger and 

Newcombe's (1989) model, but it is perfectly consistent with the logarithmic curve in the 

bottom panel of Figure 61.  In addition, a logarithmic curve like the one shown in Figure 

61 can also account for why some studies support Sherman's (1967) hypothesis while 

others do not.  For instance, the lower panel in Figure 61 implies that sex differences in 

improvement are related to initial performance differences.  The greater the initial 

performance superiority for a group, the greater the subsequent relative improvement by 

the lower performing group.  The Sex by Treatment interaction envisioned by Sherman 

(1967) would only be seen on tasks where females' initial performance is significantly 

lower than males'.  

Because New items are more difficult (for males and females) performance 

begins at a lower point on the ability curve.  A logarithmic curve predicts the greater rate 

(but not absolute level) of improvement for these more difficult items as compared to the 
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easier items.  Figures 18 and 19 are consistent with this conception.  For both males and 

females, the difference between Old and New items decreases with experience.   

 Figure 61 implies that "low" performers will show greater improvement than 

"high" performers.  This is usually taken to mean that women will show greater 

improvement than men, because, on average, men outperform women on spatial tasks.  

The current model framework provides an explicit way to define "high" and "low" 

performance, regardless of sex.  Studies of gender difference which use mean spatial test 

scores for males and females draw samples from the "high" and "low" components 

without knowing the composition of "low" and "high" performers directly.  As a result, 

the current study is more apt to find a meaningful relationship between initial 

performance and improvement.  The parameters of the mixture model can be directly 

related to the figure.  If the amount of "spatial ability" for each sex is defined in terms of 

the proportion of individuals within the "high" component and improvement by the 

increase in that proportion, then females should improve more than males (at least for the 

Penn State subjects who received the curriculum intervention).   Figure 62 shows the 

proportion estimates for the "high" performing males and females at Time 1 and Time 2 

(π̂
2

).  While only four data points does not provide extremely convincing evidence  

of a logarithmic relationship between ability and experience, it is certainly suggestive and 

requires further investigation. 

Directions for Future Research 

 The major drawback of the current study was its inability to directly evaluate the 

strategies subjects use.  Only two kinds of items were used in the current study, and no 

attempt was made to control for the complexity of each object.  A broader and more 
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systematic manipulation of complexity, as measured by either the number of blocks or 

the number of arms on each item would facilitate a deeper understanding of the role of 

item complexity.  The approach used by Siegler (1981) might hold special promise for 

untangling the different strategies subjects use, but designing objects in this paradigm is 

difficult.  For example, the use of "different" objects which are not always mirror images 

(e.g., Yuille & Steiger, 1982) should be easier for subjects classified as intermediate-level 

performers if they do, in fact, use a feature-matching strategy.  Subjects who rotate 

objects holistically may find both foils equally difficult from an accuracy perspective. 

 Additionally, only accuracy scores were measured here.  If the hypothesis that 

"high-level" performers use holistic rotation strategies and "intermediate-level" 

performers use piecemeal strategies, then the two groups' reaction times should show a 

convergent latent class structure.   

The fact that "same" and "different" items have different proportions but the same 

probabilities of success suggests that investigation from a signal detection framework 

might prove fruitful.  The relationship between accuracy and latent classes might be 

captured by a latent class signal-detection model of performance which captures 

performance groups based on different distributions of d'.  It may be the case that 

subjects' strategies involve different criteria setting for "same" and "different" items, or it 

may be that there are mixture distributions of d' that account for subjects' performance.  It 

is important to rule out the possibility of shifting response criteria for Old and New items.  

For example, the differential response bias found for Old and New items could simply be 

due to a general criterion shift over different levels of item complexity.  Folk and Luce 

(1987) have argued that a salary minus penalty for incorrect responses remuneration scale 
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is effective at increasing motivation.  This approach may also be a useful method of 

manipulating subjects' response criteria from a signal detection perspective. 

 Another method of understanding strategy use is to identify the cognitive 

correlates and component processes of performance which distinguish latent classes.  In 

other words, investigative efforts should first focus on the nature of within sex 

differences.  The gender composition of samples should not be of major importance 

according to the findings of the present research (although, as Sholl & Liben, 1995 argue, 

both males and females should be sampled).  What makes high-level performers different 

from low-level performers will lead naturally to explanations of sex differences.  It 

appears to be strategy differences that result from differences in experience.   

It was suggested here that strategy differences define each latent class and that 

visualization skill mediates subjects' strategy selection.  Further examination of the 

visualization differences between latent classes could help decide this issue.  Shepard and 

Cooper (1982) state that the quality of imagery is a necessary (but not sufficient) 

requisite for accurate performance on mental rotation tasks.  This implies a non-

equivalent conditional relationship between visualization to mental rotation performance.  

Now that high- and low-level performance can be categorized in a meaningful way (as 

opposed to more arbitrary methods like median splits), these questions become more 

tractable. 

Additionally, one of the most intriguing areas of exploration relates to the effect 

of rotation angle on accuracy judgments.  In the majority of mental rotation 

investigations, objects are rotated along only one of the three orthogonal axes (e.g., 

Shepard & Metzler, 1971).  A systematic evaluation of how subjects respond to objects 
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rotated about multiple axes and whether the psychological and physical minimum angles 

of rotation correspond would provide a much more ecologically valid understanding of 

how individuals mentally manipulate objects.  Furthermore, investigations of this type 

can also shed more light on whether rotation angle and accuracy are related within a 

latent class setting.  In addition, one measure of rotation complexity might be defined in 

terms of the number of axes required for rotation.  Some subjects may naturally rotate 

objects about each axis sequentially, while others may not.  Results from other studies 

suggest that subjects with the highest level of spatial ability use an object defined 

minimum angle of rotation, while less able subjects rotate objects sequentially about each 

axis.  A study involving accuracy and reaction times could test the hypothesis that "high" 

component subjects' reaction times linearly increase with object defined axes, while 

"intermediate" component subjects' reaction times increase linearly with summed rotation 

angle.  It would not be difficult to ensure that the object-defined rotation angle and 

summed rotation angle were uncorrelated.  This could provide further information about 

the nature of spatial representations and spatial cognition.  It might also be the case that 

"high" and "low" performers change component membership (while θ's remain constant) 

across X, Y, and Z rotation axes when examined singly, but this is an empirically testable 

hypothesis. 

 Finally, in order for issues of development to be more carefully addressed, a 

larger age range and time period should be studied.  While learning was modeled 

successfully, it remains to be seen whether or not developmental change is similar.  The 

model provided here is capable of answering such questions. 
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Summary 

 This framework for evaluating performance provides insights inaccessible to 

conventional modes of analyses.  For example, the fact that within latent class there are 

no (or few) sex differences suggests that sex per se is not responsible for performance 

differences on mental rotation items.  By looking at the proportion of items solved 

correctly without regard to component membership status, these findings would be 

washed out.  The current framework allows mental rotation accuracies to be used to 

consolidate many seemingly inconsistent empirical findings regarding strategy use, sex 

differences, the effects of item complexity and rotation angle on performance. 
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Tables and Figures 
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Table 1.  Sample Sizes by Sex and Treatment Condition. 

 
 
 
 
 
 

 
      Treatment Condition 

 
   Solid Modeling     Traditional Course 
 
Sex  Time 1             Time 2    Time 1              Time 2 
 
 
 
 
Male            n = 258      n = 169       n = 200            n = 75         n = 35          n = 80 
 
 
 
 
 
 
Female  n = 93       n = 59   n = 70             n = 28        n = 12           n = 27 
  
 
 
 
 
 
Note:  Total sample size, N = 556.  Sample sizes from Time 1 and Time 2 represent univariate 
analyses' sample sizes.  Numbers inside both ellipses represent sample sizes of subjects who 
participated at both Time 1 and Time 2 and provided bivariate data. 
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Table 2.  SAT Comparison Between Penn State and Cooper-Union First Year Students 
 
 
 
 
 
 
 
 
 
           Mean SAT*            Middle 50%**  
 
College  Math  Verbal  Math  Verbal 
 
Penn State   581     502            530-651             450-650 
 
 
Cooper-Union   720     570            690-760             540-660 
 
 
 
 

 

                                                   
* American Council on Education (1992) 
** Straughn & Lovejoy-Straughn (1995) 
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University (Curriculum)
Sex

Item Type
Item Status

Time
   Sample Size

P M O S 1 (258) = Penn State Males, Old Same Items at Time 1, n=258
M O 1 (333) = Males (Penn State & Cooper-Union), Old Items (Same & Different)

   at Time 1, n=333
C F N 2 (27) =Cooper-Union Females, New Items (Same & Different), at Time 2,

   n=27

Note:  Letters denote variables which contributed to the samples.  When letters are omitted, scores 
were summed across that variable.  For example, within the sample MO1, Univeristy and Item Status 
are absent indicating that old-same items at time 1 and old-different items at time 1 were added for 
each subject to yield a sum of correct responses on all old items, increasing the total number of items. 
Similarly, MO1 denotes the fact that Penn State and Cooper-Union male samples were combined, 
increasing sample size.



                Table 4.  Descriptive Statistics 148

University Sex Item type Item Status Time N Mean Variance Range
Penn State Female Old Same 1 93 7.80 1.75 3-9

Different 93 11.42 8.64 0-15
New Same 93 10.12 6.54 4-15

Different 93 6.10 3.63 1-9
Old Same 2 71 7.61 2.59 3-9

Different 70 12.01 9.90 3-15
New Same 70 11.23 7.86 4-15

Different 70 6.97 2.87 2-9
Male Old Same 1 258 8.26 1.18 4-9

Different 258 12.83 6.42 0-15
New Same 258 11.69 6.75 5-15

Different 258 7.09 3.44 0-9
Old Same 2 200 8.00 2.59 3-9

Different 200 12.97 7.79 4-15
New Same 200 12.25 7.31 4-15

Different 200 7.52 2.20 3-9
Cooper-Union Female Old Same 1 28 7.64 1.57 4-9

Different 28 12.25 7.01 4-15
New Same 28 10.39 4.54 7-15

Different 28 6.29 4.21 2-9
Old Same 2 27 7.74 1.43 5-9

Different 27 12.48 6.64 6-15
New Same 27 10.52 7.72 6-15

Different 27 6.26 4.82 2-9
Male Old Same 1 75 8.04 1.82 3-9

Different 75 12.84 5.81 3-15
New Same 75 11.92 7.99 2-15

Different 75 7.43 3.19 2-9
Old Same 2 80 8.23 1.19 4-9

Different 80 13.49 3.60 5-15
New Same 80 12.16 7.45 3-15

Different 80 7.56 2.45 3-9



  Table 5.  Penn State Female Model Estimates and Fit Indices

Group Curriculum Sex Time Type Status Comp's VAF df

PFOS1 Penn State Female 1 Old Same 2 0.726 0.933 0.323 0.677 0.981 6.5 7.3 6
(0.027) (0.011) (0.048) (0.048)

PFOD1 Different 3 0.000 0.606 0.895 0.011 0.428 0.561 0.962 8.0 8.4 10
(0.000) (0.020) (0.011) (0.011) (0.051) (0.051)

2 0.576 0.887 0.404 0.596 0.885 1.0E+04 25.9 12
(0.021) (0.011) (0.051) (0.051)

PFNS1 New Same 2 0.600 0.878 0.732 0.268 0.992 3.1 3.2 12
(0.015) (0.017) (0.046) (0.046)

PFND1 Different 2 0.491 0.802 0.401 0.599 1.000 1.5 1.6 6
(0.027) (0.018) (0.051) (0.051)

PFOS2 2 Old Same 2 0.630 0.933 0.290 0.710 0.983 6.8 9.0 6
(0.035) (0.012) (0.054) (0.054)

PFOD2 Different 2 0.568 0.942 0.376 0.624 0.936 21.1 16.8 12
(0.025) (0.009) (0.058) (0.058)

PFNS2 New Same 2 0.593 0.901 0.495 0.505 0.990 8.4 8.7 12
(0.022) (0.013) (0.060) (0.060)

PFND2 Different 2 0.594 0.875 0.361 0.639 0.997 4.7 4.9 6
(0.033) (0.016) (0.057) (0.057)

$θ2
$θ3

$π1 $π2 $π3 χ 2 L2$θ1
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  Note:  Standard errors are presented in parentheses below each model estimate.



  Table 6.  Penn State Male Model Estimates and Fit Indices

Group Curriculum Sex Time Type Status Comp's VAF df

PMOS1 Male 1 Old Same 2 0.807 0.981 0.365 0.635 1.000 0.7 0.9 6
(0.014) (0.004) (0.030) (0.300)

PMOD1 Different 3 0.242 0.723 0.954 0.021 0.362 0.617 0.957 22.8 17.8 10
(0.047) (0.012) (0.004) (0.009) (0.030) (0.030)

2 0.66 0.94 0.30 0.70 0.853 1.2E+05 53.80 12
(0.014) (0.004) (0.029) (0.029)

PMNS1 New Same 2 0.655 0.927 0.545 0.455 0.952 17.0 16.5 12
(0.010) (0.006) (0.031) (0.031)

PMND1 Different 3 0.336 0.704 0.924 0.071 0.430 0.499 0.995 2.0 2.0 4
(0.037) (0.014) (0.008) (0.016) (0.031) (0.031)

2 0.542 0.885 0.285 0.715 0.939 20.2 10.6 6
(0.019) (0.008) (0.028) (0.028)

PMOS2 2 Old Same 2 0.540 0.960 0.169 0.831 1.000 18.4 17.7 6
(0.029) (0.005) (0.026) (0.026)

PMOD2 Different 3 0.457 0.869 0.976 0.139 0.367 0.494 1.000 9.5 10.2 10
(0.024) (0.010) (0.004) (0.024) (0.034) (0.035)

2 0.492 0.937 0.163 0.837 0.952 28.3 27.3 12
(0.023) (0.005) (0.026) (0.026)

PMNS2 New Same 2 0.560 0.907 0.260 0.741 0.970 20.5 23.7 12
(0.018) (0.006) (0.031) (0.031)

PMND2 Different 2 0.687 0.931 0.392 0.608 1.000 2.9 3.4 6
(0.017) (0.008) (0.035) (0.035)

$θ2
$θ3

$π1
$π2 $π3 χ 2 L2$θ1
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  Note:  Standard errors are presented in parentheses below each model estimate.



  Table 7.  Cooper-Union Female Model Estimates and Fit Indices

Group Curriculum Sex Time Type Status Comp's VAF df

CFOS1 Cooper-Union Female 1 Old Same 2 0.596 0.872 0.083 0.917 0.999 3.6 3.8 6
(0.108) (0.022) (0.052) (0.052)

CFOD1 Different 2 0.592 0.900 0.270 0.730 0.878 19.6 12.3 12
(0.046) (0.017) (0.084) (0.084)

CFNS1 New Same 2 0.650 0.868 0.804 0.196 1.000 6.8 7.4 12
(0.026) (0.037) (0.075) (0.075)

CFND1 Different 2 0.562 0.927 0.621 0.380 0.969 1.6 1.8 6
(0.040) (0.028) (0.092) (0.092)

CFOS2 2 Old Same 2 0.755 0.905 0.300 0.701 0.997 1.6 1.8 6
(0.050) (0.022) (0.088) (0.088)

CFOD2 Different 2 0.602 0.913 0.260 0.740 0.902 4.2 4.1 12
(0.047) (0.016) (0.084) (0.084)

CFNS2 New Same 2 0.606 0.924 0.700 0.300 0.981 6.4 7.2 12
(0.029) (0.024) (0.088) (0.088)

CFND2 Different 2 0.495 0.887 0.489 0.511 0.970 0.7 1.0 6
(0.046) (0.028) (0.096) (0.096)

$θ2
$θ3

$π1
$π2 $π3 χ 2 L2$θ1
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  Note:  Standard errors are presented in parentheses below each model estimate.



  Table 8.  Cooper-Union Male Model Estimates and Fit Indices

Group Curriculum Sex Time Type Status Comp's VAF df

CMOS1 Male 1 Old Same 2 0.594 0.935 0.122 0.878 0.963 4.7 5.8 6
(0.054) (0.010) (0.038) (0.038)

CMOD1 Different 3 0.274 0.762 0.965 0.027 0.443 0.530 1.000 4.2 5.3 10
(0.081) (0.019) (0.008) (0.018) (0.057) (0.058)

2 0.709 0.956 0.404 0.596 0.850 559.7 19.1 12
(0.021) (0.008) (0.057) (0.057)

CMNS1 New Same 3 0.139 0.646 0.926 0.014 0.430 0.556 0.959 7.4 7.9 10
(0.089) (0.022) (0.010) (0.013) (0.057) (0.057)

2 0.612 0.917 0.401 0.599 0.894 190.4 14.9 12
(0.023) (0.011) (0.057) (0.057)

CMND1 Different 2 0.487 0.895 0.170 0.830 0.936 11.5 11.1 6
(0.047) (0.013) (0.043) (0.043)

CMOS2 2 Old Same 2 0.702 0.941 0.114 0.887 0.942 6.1 6.9 6
(0.051) (0.009) (0.035) (0.035)

CMOD2 Different 3 0.378 0.797 0.970 0.015 0.356 0.629 1.000 6.5 7.6 10
(0.113) (0.019) (0.006) (0.014) (0.054) (0.054)

2 0.759 0.965 0.318 0.682 0.916 79.2 12.8 12
(0.022) (0.006) (0.052) (0.052)

CMNS2 New Same 3 0.338 0.698 0.953 0.038 0.467 0.495 0.999 5.1 5.6 10
(0.070) (0.019) (0.009) (0.021) (0.056) (0.056)

2 0.654 0.947 0.464 0.536 0.908 76.0 12.5 12
(0.020) (0.009) (0.056) (0.056)

CMND2 Different 2 0.670 0.942 0.374 0.626 1.000 0.4 0.7 6
(0.029) (0.011) (0.054) (0.054)

$θ2
$θ3

$π1
$π2 $π3 χ 2 L2$θ1

  Note:  Standard errors are presented in parentheses below each model estimate.
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                    Table 9.  Individual Cell Contributions to Overall Chi-Squared Values.

Expected Observed
Outcome Value Value  Cell

0 0.000 0 0.000
1 0.000 0 0.000
2 0.000 0 0.000
3 0.000 0 0.000
4 0.000 0 0.000
5 0.000 0 0.000
6 0.000 0 0.000
7 0.001 0 0.001
8 0.006 0 0.006
9 0.029 1 33.108

10 0.109 0 0.109
11 0.356 2 7.601
12 0.985 4 9.227
13 2.325 2 0.045
14 4.670 6 0.379
15 7.959 5 1.100
16 11.448 7 1.728
17 13.795 7 3.347
18 13.868 9 1.709
19 12.083 22 8.139
20 11.788 16 1.505
21 19.934 26 1.846
22 42.430 39 0.277
23 65.989 47 5.464
24 50.227 65 4.345

Model    = 79.938 , df = 21

χ 2

χ 2
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                    Table 10.  Male Vs. Female Achievement Test Comparisons.

Female Male
Variable Mean Mean T p K-S
SATM 590.020 593.611 -0.172 0.864 p > .05

(16.50) (12.78)
50 157

SATV 490.420 478.962 0.556 0.579 p > .05
(15.21) (10.56)

50 157
BM 15.400 15.548 -0.260 0.796 p > .05

(0.52) (0.23)
50 157

M40 16.280 16.892 -0.767 0.444 p > .05
(0.80) (0.37)

50 157
M110 17.400 18.032 -0.524 0.601 p > .05

(1.07) (0.59)
50 157

M140 15.660 17.474 -1.280 0.202 p > .05
(1.03) (0.73)

50 156
CHM 21.250 18.193 1.485 0.139 p > .05

(1.94) (0.99)
48 150

ENG 29.176 29.252 -0.030 0.976 p > .05
(2.57) (1.06)

28 103
HSGPA 3.488 3.228 2.341 0.021 p > .05

(0.09) (0.07)
50 157

COLGPA 2.520 2.533 1.440 0.152 p > .05
(0.19) (0.10)

50 157
Note:  For Each Variable, Standard Errors (in Parentheses) and Sample Sizes 
are Presented Below Mean Values.  The K-S column provides p-values for the 
Kolmogorov-Smirnov test.  SATM = Scholastic Achievement Test - Math 
Portion, SATV = Scholastic Achievement Test - Verbal Portion, BM = Penn 
State Placement Test for Basic Math Skills, M40-M140 = Penn State 
Placement Tests of Increasing Difficulty for Math Skills, CHM = Penn State 
Placement Test for Chemistry, ENG = Penn State Placement Test For English 
Skills, HSGPA = Cumulative High School Grade Point Average, COLGPA = 
Cumulative Penn State Grade Point Average.
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              Table 11.  Within Component Comparison of Males' and Females' Performance on
              Achievement Tests Based on Posterior Probabilities for Old-Same Items at Time 1.

Low High
Female Male Female Male

Variable Mean Mean T p K-S Mean Mean T p K-S
SATM 601.250 559.000 0.891 0.391 p > .05 589.049 594.245 -0.188 0.851 p > .05

(16.41) (44.48) (19.89) (13.74)
8 10 41 142

SATV 533.750 511.000 0.440 0.666 p > .05 480.756 475.613 0.224 0.823 p > .05
(32.23) (38.25) (17.24) (11.31)

8 10 41 142
BM 16.000 14.800 0.585 0.569 p > .05 15.268 15.592 -0.498 0.621 p > .05

(0.89) (1.85) (0.61) (0.22)
8 10 41 142

M40 17.375 16.500 0.280 0.783 p > .05 16.195 16.993 -0.813 0.420 p > .05
(1.76) (2.40) (0.91) (0.36)

8 10 41 142
M110 17.250 16.500 0.222 0.827 p > .05 17.585 18.127 -0.406 0.685 p > .05

(2.27) (2.40) (1.23) (0.62)
8 10 41 142

M140 14.875 18.200 -0.700 0.498 p > .05 16.073 17.390 -0.875 0.383 p > .05
(1.63) (4.46) (1.19) (0.73)

8 10 41 141
CHM 25.125 22.500 0.360 0.724 p > .05 20.231 17.818 1.088 0.278 p > .05

(4.49) (5.40) (2.16) (1.01)
8 8 39 137

ENG 39.667 19.833 1.813 0.113 p > .05 27.920 29.532 -0.657 0.512 p > .05
(6.77) (6.83) (2.69) (1.05)

3 6 25 94
HSGPA 3.803 2.879 2.309 0.044 p > .05 3.440 3.243 4.426 0.156 p > .05

(0.08) (0.39) (0.10) (0.07)
8 10 41 142

COLGPA 3.119 2.220 1.945 0.070 p > .05 2.379 2.538 -0.711 0.478 p > .05
(0.20) (0.41) (0.23) (0.10)

8 10 41 142

Note:  For Each Variable, Standard Errors (in Parentheses) and Sample Sizes are 
Presented Below Mean Values.  The K-S column provides p-values for the 
Kolmogorov-Smirnov test.  SATM = Scholastic Achievement Test - Math Portion, 
SATV = Scholastic Achievement Test - Verbal Portion, BM = Penn State Placement 
Test for Basic Math Skills, M40-M140 = Penn State Placement Tests of Increasing 
Difficulty for Math Skills, CHM = Penn State Placement Test for Chemistry, ENG = 
Penn State Placement Test For English Skills, HSGPA = Cumulative High School 
Grade Point Average, COLGPA = Cumulative Penn State Grade Point Average.
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              Table 12.  Within Component Comparison of Males' and Females' Performance on 
              Achievement Tests Based on Posterior Probabilities for Old-Different Items at Time 2.

Low High
Female Male Female Male

Variable Mean Mean T p K-S Mean Mean T p K-S
SATM 592.143 607.892 -0.503 0.618 p > .05 620.048 611.787 0.346 0.731 p > .05

(21.64) (22.67) (14.75) (18.81)
14 37 21 75

SATV 470.000 481.946 -0.464 0.645 p > .05 530.048 494.987 1.511 0.136 p > .05
(17.13) (19.19) (16.45) (16.37)

14 37 21 75
BM 14.786 15.243 -0.409 0.684 p > .05 16.381 16.373 0.014 0.989 p > .05

(1.11) (0.05) (0.41) (0.26)
14 37 21 75

M40 16.071 16.973 -0.635 0.528 p > .05 18.048 17.667 0.380 0.705 p > .05
(1.42) (0.69) (0.87) (0.47)

14 37 21 75
M110 15.429 18.946 -1.634 0.109 p > .05 20.476 19.387 0.759 0.450 p > .05

(1.92) (1.11) (1.19) (0.68)
14 37 21 75

M140 16.143 18.838 -0.991 0.326 p > .05 17.333 19.347 -0.929 0.355 p > .05
(1.67) (1.54) (1.57) (1.06)

14 37 21 75
CHM 20.917 19.206 0.434 0.667 p > .05 23.286 18.514 1.659 0.101 p > .05

(3.50) (1.99) (2.72) (1.34)
12 34 21 72

ENG 24.222 27.808 -0.716 0.479 p > .05 35.727 31.350 1.134 0.262 p > .05
(5.08) (2.38) (3.34) (1.64)

9 26 11 50
HSGPA 3.571 3.348 1.644 0.107 p > .05 3.700 3.313 3.121 0.003 p > .05

(0.07) (0.11) (0.07) (0.10)
14 37 21 75

COLGPA 2.945 2.769 0.870 0.389 p > .05 2.488 2.777 -0.824 0.418 p > .05
(0.12) (0.16) (0.33) (0.12)

14 37 21 75

Note:  For Each Variable, Standard Errors (in Parentheses) and Sample Sizes are 
Presented Below Mean Values. The K-S column provides p-values for the 
Kolmogorov-Smirnov test.   SATM = Scholastic Achievement Test - Math Portion, 
SATV = Scholastic Achievement Test - Verbal Portion, BM = Penn State Placement 
Test for Basic Math Skills, M40-M140 = Penn State Placement Tests of Increasing 
Difficulty for Math Skills, CHM = Penn State Placement Test for Chemistry, ENG 
= Penn State Placement Test For English Skills, HSGPA = Cumulative High School 
Grade Point Average, COLGPA = Cumulative Penn State Grade Point Average.
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              Table 13.  Within Component Comparison of Males' and Females' Performance on 
              Achievement Tests Based on Posterior Probabilities for New-Different Items at Time 1.

Low High
Female Male Female Male

Variable Mean Mean T p K-S Mean Mean T p K-S
SATM 554.440 566.735 -0.413 0.681 p > .05 629.167 606.735 0.963 0.338 p > .05

(28.03) (15.78) (15.04) (17.78)
25 49 24 102

SATV 470.840 465.510 0.207 0.837 p > .05 508.750 485.363 0.938 0.353 p > .05
(23.55) (10.39) (19.69) (15.31)

25 49 24 102
BM 14.480 14.184 0.287 0.776 p > .05 16.333 16.294 0.074 0.942 p > .05

(0.94) (0.45) (0.41) (0.24)
25 49 24 102

M40 15.160 14.857 0.207 0.837 p > .05 17.667 18.098 -0.443 0.659 p > .05
(1.35) (0.56) (0.93) (0.43)

25 49 24 102
M110 16.520 14.857 0.904 0.369 p > .05 18.583 19.647 -0.669 0.505 p > .05

(0.17) (1.00) (1.39) (0.70)
25 49 24 102

M140 14.800 14.551 0.141 0.888 p > .05 17.000 18.833 -0.877 0.382 p > .05
(1.28) (1.08) (1.62) (0.94)

25 49 24 102
CHM 23.375 14.830 2.527 0.016 p < .05* 18.652 19.722 -0.369 0.713 p > .05

(3.05) (1.47) (2.45) (1.29)
24 47 23 97

ENG 25.000 27.429 -0.593 0.563 p > .05 32.313 29.769 0.750 0.456 p > .05
(3.85) (1.41) (3.34) (1.47)

12 35 16 65
HSGPA 3.496 3.177 1.728 0.088 p > .05 3.503 3.242 2.172 0.033 p > .05

(0.16) (0.10) (0.08) (0.09)
25 49 24 102

COLGPA 2.932 2.541 1.614 0.111 p > .05 2.049 2.531 -1.570 0.119 p > .05
(0.20) (0.14) (0.32) (0.13)

25 49 24 102

Note:  For Each Variable, Standard Errors (in Parentheses) and Sample Sizes are 
Presented Below Mean Values.  The K-S column provides p-values for the 
Kolmogorov-Smirnov test.  SATM = Scholastic Achievement Test - Math Portion, 
SATV = Scholastic Achievement Test - Verbal Portion, BM = Penn State Placement 
Test for Basic Math Skills, M40-M140 = Penn State Placement Tests of Increasing 
Difficulty for Math Skills, CHM = Penn State Placement Test for Chemistry, ENG = 
Penn State Placement Test For English Skills, HSGPA = Cumulative High School 
Grade Point Average, COLGPA = Cumulative Penn State Grade Point Average.
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              Table 14.  Within Component Comparison of Males' and Females' Performance on 
              Achievement Tests Based on Posterior Probabilities for New-Same Items at Time 2.

Low High
Female Male Female Male

Variable Mean Mean T p K-S Mean Mean T p K-S
SATM 592.278 603.167 -0.373 0.710 p > .05 626.470 616.000 0.421 0.675 p > .05

(18.66) (22.41) (15.62) (19.36)
18 48 17 64

SATV 488.389 483.375 0.189 0.851 p > .05 524.706 496.156 1.187 0.241 p > .05
(18.77) (18.82) (16.94) (17.09)

18 48 17 64
BM 14.722 15.417 -0.782 0.437 p > .05 16.824 16.737 0.642 0.523 p > .05

(0.88) (0.43) (0.39) (0.29)
18 48 17 64

M40 16.111 16.896 -0.702 0.485 p > .05 18.471 17.844 0.532 0.596 p > .05
(1.20) (0.52) (0.91) (0.56)

18 48 17 64
M110 16.722 19.021 -1.218 0.228 p > .05 20.294 19.406 0.567 0.573 p > .05

(1.54) (1.00) (1.53) (0.70)
18 48 17 64

M140 17.611 18.229 -0.295 0.769 p > .05 16.059 19.891 -1.474 0.145 p > .05
(1.30) (1.18) (1.94) (1.24)

18 48 17 64
CHM 22.125 19.196 0.804 0.425 p > .05 22.706 18.383 1.445 0.153 p < .05*

(3.23) (1.83) (2.88) (1.37)
16 46 17 60

ENG 27.364 30.735 -0.776 0.442 p > .05 34.444 29.690 1.066 0.292 p > .05
(4.93) (1.90) (3.37) (1.93)

11 34 9 42
HSGPA 3.616 3.270 2.297 0.025 p > .05 3.682 3.366 2.609 0.012 p > .05

(0.04) (0.13) (0.08) (0.09)
18 48 17 64

COLGPA 2.926 2.782 0.543 0.589 p > .05 2.401 2.768 -0.963 0.347 p > .05
(0.20) (0.14) (0.36) (0.13)

18 48 17 64

Note:  For Each Variable, Standard Errors (in Parentheses) and Sample Sizes are 
Presented Below Mean Values.  The K-S column provides p-values for the 
Kolmogorov-Smirnov test.  SATM = Scholastic Achievement Test - Math 
Portion, SATV = Scholastic Achievement Test - Verbal Portion, BM = Penn 
State Placement Test for Basic Math Skills, M40-M140 = Penn State Placement 
Tests of Increasing Difficulty for Math Skills, CHM = Penn State Placement 
Test for Chemistry, ENG = Penn State Placement Test For English Skills, 
HSGPA = Cumulative High School Grade Point Average, COLGPA = 
Cumulative Penn State Grade Point Average.
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 Table 15.  Within Component Comparison of Males' and Females' Performance on Achievement Tests 
 Based on Posterior Probabilities for Old Items at Time 1.

Low Middle High
Female Male Female Male Female Male

Variable Mean Mean T p K-S Mean Mean T p K-S Mean Mean T p K-S
SATM 528.273 463.571 0.806 0.428 p > .05 600.000 564.044 1.126 0.265 p > .05 621.875 624.785 -0.089 0.929 p > .05

(59.52) (20.41) (13.91) (28.73) (22.84) (12.94)
11 14 22 45 16 93

SATV 429.182 415.000 0.218 0.829 p > .05 518.636 447.156 2.425 0.018 p > .05 490.625 502.312 -0.405 0.686 p > .05
(46.54) (44.43) (17.76) (23.53) (22.54) (11.32)

11 14 22 45 16 93
BM 13.727 12.785 0.429 0.672 p > .05 15.682 15.178 0.574 0.571 p > .05 16.125 16.129 -0.007 0.995 p > .05

(1.45) (1.57) (0.81) (0.35) (0.58) (0.24)
11 14 22 45 16 93

M40 14.455 14.214 0.078 0.939 p > .05 17.000 16.067 0.726 0.473 p > .05 16.875 17.806 -0.827 0.410 p > .05
(2.21) (2.13) (1.16) (0.56) (1.19) (0.42)

11 14 22 45 16 93
M110 15.636 12.500 0.809 0.427 p > .05 17.364 16.956 0.255 0.800 p > .05 19.063 19.366 -0.153 0.879 p > .05

(3.01) (2.50) (1.44) (0.87) (1.78) (0.76)
11 14 22 45 16 93

M140 15.182 14.308 0.210 0.837 p > .05 16.318 17.400 -0.492 0.624 p > .05 15.750 17.903 -0.949 0.345 p > .05
(1.68) (3.82) (1.54) (1.34) (2.11) (0.87)

11 13 22 45 16 93
CHM 21.000 14.417 1.303 0.208 p > .05 20.095 17.698 0.734 0.466 p > .05 22.375 18.744 1.049 0.297 p > .05

(3.71) (3.42) (3.10) (1.71) (3.59) (1.31)
10 12 21 43 16 90

ENG 26.667 20.600 0.829 0.421 p > .05 27.929 28.355 -0.118 0.907 p > .05 33.250 30.678 0.651 0.517 p > .05
(6.23) (4.28) (3.74) (1.76) (4.42) (1.33)

6 10 14 31 8 59
HSGPA 3.270 2.479 1.651 0.112 p < .05* 3.602 3.136 2.905 0.005 p > .05 3.516 3.370 0.869 0.387 p > .05

(0.34) (0.33) (0.08) (0.14) (0.11) (0.07)
11 14 22 45 16 93

COLGPA 2.564 2.111 0.870 0.393 p > .05 2.863 2.263 1.894 0.063 p > .05 1.955 2.702 -1.748 0.098 p > .05
(0.40) (0.34) (0.23) (0.19) (0.41) (0.12)

11 14 22 45 16 93
Note:  For Each Variable, Standard Errors (in Parentheses) and Sample Sizes are Presented Below Mean Values. The K-S column provides p-values for the Kolmogorov-Smirnov test.   
SATM = Scholastic Achievement Test - Math Portion, SATV = Scholastic Achievement Test - Verbal Portion, BM = Penn State Placement Test for Basic Math Skills, M40-M140 = Penn 
State Placement Tests of Increasing Difficulty for Math Skills, CHM = Penn State Placement Test for Chemistry, ENG = Penn State Placement Test For English Skills, HSGPA = 
Cumulative High School Grade Point Average, COLGPA = Cumulative Penn State Grade Point Average.
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 Table 16.  Within Component Comparison of Males' and Females' Performance on Achievement Tests 
 Based on Posterior Probabilities for New Items at Time 2.

Low Middle High
Female Male Female Male Female Male

Variable Mean Mean T p K-S Mean Mean T p K-S Mean Mean T p K-S
SATM 598.462 597.000 0.038 0.970 p > .05 600.111 605.525 -0.098 0.922 p > .05 625.384 622.457 0.112 0.911 p > .05

(23.28) (30.61) (29.86) (25.16) (13.57) (22.42)
13 26 9 40 13 46

SATV 473.846 475.077 -0.041 0.968 p > .05 533.444 489.525 0.915 0.365 p > .05 519.231 500.500 0.667 0.509 p > .05
(17.08) (24.91) (31.16) (21.58) (19.53) (20.16)

13 26 9 40 13 46
BM 14.769 17.620 -0.148 0.883 p > .05 16.444 16.150 -0.877 0.385 p > .05 16.923 16.457 0.675 0.503 p > .05

(1.20) (0.70) (0.65) (0.35) (0.43) (0.35)
13 26 9 40 13 46

M40 16.385 16.615 -0.143 0.887 p > .05 17.222 17.725 -0.351 0.727 p > .05 18.154 17.652 0.381 0.705 p > .05
(1.56) (0.84) (1.33) (0.61) (1.10) (0.63)

13 26 9 40 13 46
M110 16.692 18.077 -0.857 0.345 p > .05 20.556 19.225 0.629 0.532 p > .05 19.769 19.913 -0.078 0.938 p > .05

(2.02) (1.44) (1.70) (0.93) (1.74) (0.85)
13 26 9 40 13 46

M140 17.000 18.615 -0.665 0.510 p > .05 20.000 18.825 0.496 0.624 p > .05 14.538 19.804 1.954 0.056 p > .05
(1.44) (1.55) (1.66) (1.69) (2.37) (1.27)

13 26 24 40 13 46
CHM 24.727 18.208 1.409 0.168 p > .05 17.778 18.649 -0.205 0.839 p > .05 23.692 19.089 1.307 0.197 p > .05

(4.07) (2.52) (4.68) (1.77) (2.64) (1.73)
11 24 9 37 13 45

ENG 23.286 27.952 -0.839 0.409 p > .05 33.571 30.200 0.593 0.557 p > .05 35.500 31.667 0.794 0.433 p > .05
(6.53) (2.40) (3.71) (2.80) (5.14) (1.91)

7 21 7 25 6 30
HSGPA 3.595 3.277 1.845 0.074 p < .05* 3.751 3.267 2.682 0.010 p < .05* 3.329 3.402 1.628 0.112 p < .05*

(0.08) (0.15) (0.09) (0.16) (0.10) (0.10)
13 26 9 40 13 46

COLGPA 3.107 2.642 1.814 0.078 p > .05 2.481 2.894 -0.812 0.438 p > .05 2.366 2.745 -1.015 0.314 p > .05
(0.14) (0.22) (0.49) (0.13) (0.41) (0.16)

13 26 9 40 13 46
Note:  For Each Variable, Standard Errors (in Parentheses) and Sample Sizes are Presented Below Mean Values.  The K-S column provides p-values for the Kolmogorov-
Smirnov test.  SATM = Scholastic Achievement Test - Math Portion, SATV = Scholastic Achievement Test - Verbal Portion, BM = Penn State Placement Test for Basic 
Math Skills, M40-M140 = Penn State Placement Tests of Increasing Difficulty for Math Skills, CHM = Penn State Placement Test for Chemistry, ENG = Penn State 
Placement Test For English Skills, HSGPA = Cumulative High School Grade Point Average, COLGPA = Cumulative Penn State Grade Point Average.
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                   Table 17.  Comparison of High- and Low-Performing Components' Achievement Test 
                    Scores Based on Posterior Probabilities for Old-different Items at Time 1.

Low High
Variable Mean Mean T p K-S
SATM 555.781 615.921 -2.745 0.007 p < .05*

(19.52) (12.26)
73 126

SATV 463.589 492.905 -1.565 0.119 p > .05
(16.25) (10.71)

73 126
BM 14.863 16.063 -2.580 0.011 p > .05

(0.41) (0.21)
73 126

M40 15.685 17.690 -2.799 0.006 p > .05
(0.61) (0.38)

73 126
M110 16.082 19.159 -2.894 0.004 p > .05

(0.85) (0.64)
73 126

M140 15.521 17.944 -1.907 0.058 p > .05
(1.01) (0.77)

73 126
CHM 17.507 19.642 -1.440 0.254 p > .05

(1.39) (1.18)
71 120

ENG 28.857 29.462 -0.297 0.767 p > .05
(1.52) (1.30)

49 78
HSGPA 3.186 3.351 -1.308 0.193 p < .05*

(0.11) (0.06)
73 126

COLGPA 2.431 2.579 -0.808 0.420 p > .05
(0.15) (0.11)

73 126

Note:  For Each Variable, Standard Errors (in Parentheses) and Sample 
Sizes are Presented Below Mean Values.  The K-S column provides p-
values for the Kolmogorov-Smirnov test.  SATM = Scholastic 
Achievement Test - Math Portion, SATV = Scholastic Achievement Test - 
Verbal Portion, BM = Penn State Placement Test for Basic Math Skills, 
M40-M140 = Penn State Placement Tests of Increasing Difficulty for Math 
Skills, CHM = Penn State Placement Test for Chemistry, ENG = Penn 
State Placement Test For English Skills, HSGPA = Cumulative High 
School Grade Point Average, COLGPA = Cumulative Penn State Grade 
Point Average.
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                   Table 18.  Comparison of High- and Low-Performing Components' Achievement Test
                   Scores Based on Posterior Probabilities for New-same Items at Time 1.

Low High
Variable Mean Mean T p K-S
SATM 567.492 632.453 -2.983 0.003 p < .05*

(13.06) (17.75)
126 75

SATV 462.651 511.120 -2.636 0.009 p < .05*
(10.82) (15.41)

126 75
BM 14.960 16.413 -3.242 0.001 p < .05*

(0.29) (0.32)
126 75

M40 15.976 18.240 -3.269 0.001 p < .05*
(0.43) (0.53)
126 75

M110 16.421 20.387 -3.774 0.001 p < .05*
(0.65) (0.80)
126 75

M140 16.008 18.851 -2.260 0.025 p > .05
(0.75) (1.03)
126 74

CHM 17.417 21.125 -20.136 0.046 p > .05
(1.09) (1.54)
120 72

ENG 28.386 30.133 -0.828 0.409 p > .05
(1.22) (1.77)

83 45
HSGPA 3.245 3.359 -1.027 0.306 p < .05*

(0.08) (0.08)
126 75

COLGPA 2.436 2.643 -1.137 0.257 p > .05
(0.11) (0.15)
126 75

Note:  For Each Variable, Standard Errors (in Parentheses) and Sample Sizes are 
Presented Below Mean Values.  The K-S column provides p-values for the 
Kolmogorov-Smirnov test.  SATM = Scholastic Achievement Test - Math 
Portion, SATV = Scholastic Achievement Test - Verbal Portion, BM = Penn 
State Placement Test for Basic Math Skills, M40-M140 = Penn State Placement 
Tests of Increasing Difficulty for Math Skills, CHM = Penn State Placement Test 
for Chemistry, ENG = Penn State Placement Test For English Skills, HSGPA = 
Cumulative High School Grade Point Average, COLGPA = Cumulative Penn 
State Grade Point Average.
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                   Table 19.  Comparison of High- and Low-Performing Components' Achievement Test 
                   Scores Based on Posterior Probabilities for Old-same Items at Time 2.

Low High
Variable Mean Mean T p K-S
SATM 619.438 607.522 0.427 0.670 p > .05

(23.05) (13.25)
32 115

SATV 486.000 496.652 -0.434 0.665 p > .05
(20.58) (11.60)

32 115
BM 15.844 15.965 -0.519 0.827 p > .05

(0.39) (0.27)
32 115

M40 17.875 17.261 0.728 0.468 p > .05
(0.61) (0.41)

32 115
M110 19.219 19.008 0.167 0.867 p > .05

(1.20) (0.57)
32 115

M140 19.188 18.470 0.411 0.682 p > .05
(1.30) (0.85)

32 115
CHM 19.667 19.596 0.029 0.947 p > .05

(2.43) (1.07)
30 109

ENG 28.391 30.822 -0.829 0.409 p > .05
(2.30) (1.48)

23 73
HSGPA 3.357 3.414 -0.390 0.697 p < .05*

(0.13) (0.07)
32 115

COLGPA 2.783 2.741 0.196 0.843 p > .05
(0.18) (0.10)

32 115

Note:  For Each Variable, Standard Errors (in Parentheses) and Sample 
Sizes are Presented Below Mean Values.  The K-S column provides p-
values for the Kolmogorov-Smirnov test.  SATM = Scholastic 
Achievement Test - Math Portion, SATV = Scholastic Achievement Test - 
Verbal Portion, BM = Penn State Placement Test for Basic Math Skills, 
M40-M140 = Penn State Placement Tests of Increasing Difficulty for 
Math Skills, CHM = Penn State Placement Test for Chemistry, ENG = 
Penn State Placement Test For English Skills, HSGPA = Cumulative High 
School Grade Point Average, COLGPA = Cumulative Penn State Grade 
Point Average.
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                   Table 20.  Comparison of High- and Low-Performing Components' Achievement Test 
                    Scores Based on Posterior Probabilities for New-different Items at Time 2.

Low High
Variable Mean Mean T p K-S
SATM 606.152 611.921 -0.232 0.817 p > .05

(19.28) (14.29)
46 101

SATV 487.239 497.654 -0.473 0.637 p > .05
(16.13) (12.76)

46 101
BM 15.087 16.327 -2.122 0.038 p > .05

(0.54) (0.21)
46 101

M40 16.804 17.663 -1.147 0.253 p > .05
(0.71) (0.39)

46 101
M110 17.696 19.673 -1.789 0.076 p > .05

(1.01) (0.59)
46 101

M140 18.435 18.713 -0.179 0.858 p > .05
(1.34) (0.85)

46 101
CHM 19.073 19.837 -0.352 0.726 p > .05

(1.80) (1.19)
41 98

ENG 27.364 31.746 -1.682 0.096 p > .05
(2.29) (1.46)

33 63
HSGPA 3.371 3.416 -0.337 0.737 p < .05*

(0.09) (0.08)
46 101

COLGPA 2.831 2.712 0.633 0.528 p > .05
(0.13) (0.11)

46 101

Note:  For Each Variable, Standard Errors (in Parentheses) and Sample 
Sizes are Presented Below Mean Values.  The K-S column provides p-
values for the Kolmogorov-Smirnov test.  SATM = Scholastic 
Achievement Test - Math Portion, SATV = Scholastic Achievement Test - 
Verbal Portion, BM = Penn State Placement Test for Basic Math Skills, 
M40-M140 = Penn State Placement Tests of Increasing Difficulty for 
Math Skills, CHM = Penn State Placement Test for Chemistry, ENG = 
Penn State Placement Test For English Skills, HSGPA = Cumulative High 
School Grade Point Average, COLGPA = Cumulative Penn State Grade 
Point Average.
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Table 21.  Joint Two Component Frequency Tables and Model Estimates for All Subjects on Same and Different, Old and New Items at Times 1 and 2.
Old Same Items Old Different Items
          Time 2           Time 1

            "Low"            "High"             "Low"            "High"
0.059 0.033 0.058 0.076 Raw Score Correlation 0.152 0.084 0.005 0.029 Raw Score Correlation
(0.014) (0.014)  r = 0.205  (p <.001) (0.011) (0.011)  r = 0.367  (p <.001)

"Low" 0.506 0.300 0.494 0.700 "Low" 1.000 0.745 0.000 0.255
Old (0.127) (0.127) Old (0.081) (0.081)
Same 9 21 Component Score Correlation Same 38 13 Component Score Correlation
Items 0.119 0.116 0.763 0.775 r = 0.148 (p = .014) Items 0.177 0.296 0.666 0.591 r = 0.268 (p = .001)
Time 1 (0.014) (0.014) Time 1 (0.011) (0.011)

"High" 0.137 0.131 0.863 0.869 "High" 0.218 0.334 0.782 0.666
(0.016) (0.016) Model Correlation (0.012) (0.012) Model Correlation

32 213        = 0.102 134 267       = 0.395

(78) = 95.3  , p = n.s. (132) = 193.0 , p < .05
(78) = 100.0 , p = n.s. (132) = 182.2 , p < .05

New Same Items Old Different Items
          Time 1           Time 2

            "Low"            "High"             "Low"            "High"
0.16 0.104 0.000 0.009 Raw Score Correlation 0.180 0.117 0.002 0.024 Raw Score Correlation

(0.014) (0.014)  r = 0.450  (p <.001) (0.006) (0.006)  r = 0.641  (p <.001)
"Low" 1.000 0.922 0.000 0.078 "Low" 1.000 0.830 0.000 0.170

Old (0.107) (0.107) Old (0.036) (0.036)
Same 47 4 Component Score Correlation Same 44 9 Component Score Correlation
Items 0.431 0.500 0.408 0.388 r = 0.231 (p = .001) Items 0.042 0.180 0.776 0.679 r = 0.405 (p = .001)
Time 1 (0.014) (0.014) Time 2 (0.006) (0.006)

"High" 0.513 0.563 0.487 0.437 "High" 0.056 0.210 0.944 0.790
(0.016) (0.016) Model Correlation (0.008) (0.008) Model Correlation

227 176        = 0.404 68 256       = 0.801

(132) = 130.2 , p = n.s. (132) = 375.8 , p < .05
(132) = 157.7 , p = n.s. (132) = 210.5 , p < .05

$ρ

χ 2

L2

$ρ

χ 2

L2

$ρ

χ 2

L2

$ρ

χ 2

L2

 A

D C

B

A

A

A

A

A

A

A

B

C

B

A

A

Note:  Within each panel, correlations with the same letter are non-significantly different.

gfwt
165

gfwt
165

gfwt



Table 21 Cont'd. 
New Same Items Old Different Items
          Time 2           Time 2

            "Low"            "High"             "Low"            "High"
0.207 0.135 0.000 0.005 Raw Score Correlation 0.139 0.153 0.150 0.201 Raw Score Correlation
(0.017) (0.017)  r = 0.662  (p <.001) (0.016) (0.016)  r = 0.268  (p <.001)

"Low" 0.630 0.962 0.370 0.038 "Low" 0.829 0.433 0.171 0.567
Old (0.029) (0.029) Old (0.002) (0.002)
Same 51 2 Component Score Correlation Diff. 42 55 Component Score Correlation
Items 0.207 0.326 0.586 0.533 r = 0.406 (p = .001) Items 0.104 0.146 0.607 0.500 r = 0.216 (p = .001)
Time 2 (0.017) (0.017) Time 1 (0.016) (0.016)

"High" 0.162 0.380 0.838 0.620 "High" 0.022 0.226 0.978 0.774
(0.034) (0.034) Model Correlation (0.003) (0.003) Model Correlation

123 201        = 0.711 40 137       = 0.169

(78) = 95.3  , p < .05 (222) = 211.1 , p = n.s.
(132) = 207.2 , p < .05 (222) = 219.1 , p = n.s.

New Different Items New Different Items
          Time 1           Time 2

            "Low"            "High"             "Low"            "High"
0.320 0.232 0.005 0.148 Raw Score Correlation 0.246 0.204 0.000 0.093 Raw Score Correlation
(0.010) (0.010)  r = 0.641  (p <.001) (0.015) (0.015)  r = 0.623  (p <.001)

"Low" 0.862 0.610 0.138 0.390 "Low" 0.696 0.688 0.304 0.313
Old (0.030) (0.030) Old (0.041) (0.041)
Diff. 105 67 Component Score Correlation Diff. 77 35 Component Score Correlation
Items 0.170 0.108 0.505 0.511 r = 0.405 (p = .001) Items 0.105 0.074 0.649 0.629 r = 0.593 (p = .001)
Time 1 (0.010) (0.010) Time 2 (0.015) (0.015)

"High" 0.034 0.175 0.966 0.825 "High" 0.134 0.106 0.866 0.894
(0.023) (0.023) Model Correlation (0.039) (0.039) Model Correlation

49 231        = 0.801 28 237       = 0.884

(132) = 513.7 , p < .05 (132) = 192.5 , p < .05
(132) = 250.8 , p < .05 (132) = 168.6 , p < .05
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Table 21 Cont'd.
New Same Items New Different Items
          Time 2           Time 1

            "Low"            "High"             "Low"            "High"
0.335 0.324 0.196 0.225 Raw Score Correlation 0.505 0.291 0.111 0.313 Raw Score Correlation
(0.016) (0.016)  r = 0.401  (p <.001) (0.001) (0.001)  r = 0.471  (p <.001)

"Low" 1.000 0.589 0.000 0.411 "Low" 0.480 0.482 0.520 0.518
New (0.101) (0.101) New (0.055) (0.055)
Same 89 62 Component Score Correlation Same 132 142 Component Score Correlation
Items 0.078 0.105 0.391 0.345 r = 0.357 (p = .001) Items 0.000 0.051 0.384 0.344 r = 0.364 (p = .001)
Time 1 (0.016) (0.016) Time 1 (0.001) (0.001)

"High" 0.271 0.234 0.729 0.766 "High" 0.147 0.128 0.853 0.872
(0.021) (0.021) Model Correlation (0.022) (0.022) Model Correlation

29 95        = 0.257 23 156       = 0.589

(78) = 95.3  , p = n.s. (132) = 169.2 , p < .05
(222) = 175.4 , p = n.s. (132) = 184.1 , p < .05

New Different Items New Different Items
          Time 2           Time 2

            "Low"            "High"             "Low"            "High"
0.372 0.231 0.059 0.231 Raw Score Correlation 0.332 0.164 0.141 0.145 Raw Score Correlation
(0.013) (0.013)  r = 0.621  (p <.001) (0.020) (0.020)  r = 0.427  (p <.001)

"Low" 0.984 0.500 0.016 0.500 "Low" 1.000 0.529 0.000 0.471
New (0.031) (0.031) New (0.064) (0.064)
Same 87 87 Component Score Correlation Diff. 45 40 Component Score Correlation
Items 0.020 0.048 0.549 0.491 r = 0.457 (p = .001) Items 0.076 0.127 0.451 0.564 r = 0.351 (p = .001)
Time 2 (0.013) (0.013) Time 1 (0.020) (0.020)

"High" 0.252 0.089 0.748 0.911 "High" 0.143 0.184 0.857 0.816
(0.015) (0.015) Model Correlation (0.020) (0.020) Model Correlation

18 185        = 0.542 35 155       = 0.288

(132) = 117.6 , p = n.s. (78) = 111.8 , p < .05
(132) = 130.3 , p = n.s. (78) = 120.4 , p < .05
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Table 22.  Joint Two Component Frequency Tables and Model Estimates for Males on Same and Different, Old and New Items at Times 1 and 2.
Old Same Items Old Different Items
          Time 2           Time 1

            "Low"            "High"             "Low"            "High"
0.026 0.020 0.053 0.064 Raw Score Correlation 0.121 0.069 0.001 0.024 Raw Score Correlation
(0.014) (0.014)  r = 0.113  (p <.059) (0.012) (0.012)  r = 0.391  (p <.001)

"Low" 0.316 0.235 0.684 0.765 "Low" 1.000 0.742 0.000 0.258
Old (0.190) (0.190) Old (0.118) (0.118)
Same 4 13 Component Score Correlation Same 23 8 Component Score Correlation
Items 0.128 0.113 0.792 0.804 r = 0.092 (p = .193) Items 0.147 0.268 0.732 0.639 r = 0.275 (p = .001)
Time 1 (0.014) (0.014) Time 1 (0.012) (0.012)

"High" 0.141 0.123 0.859 0.877 "High" 0.174 0.296 0.826 0.704
(0.015) (0.015) Model Correlation (0.013) (0.013) Model Correlation

23 164        = 0.040 89 212       = 0.485

(78) = 95.3  , p < .05 (132) = 113.6 , p = n.s.
(78) = 115.2 , p < .05 (132) = 161.6 , p < .05

New Same Items Old Different Items
          Time 1           Time 2

            "Low"            "High"             "Low"            "High"
0.124 0.084 0.000 0.009 Raw Score Correlation 0.148 0.100 0.004 0.021 Raw Score Correlation
(0.017) (0.017)  r = 0.426  (p <.001) (0.007) (0.007)  r = 0.772  (p <.001)

"Low" 1.000 0.903 0.000 0.097 "Low" 1.000 0.824 0.000 0.176
Old (0.169) (0.169) Old (0.045) (0.045)
Same 28 3 Component Score Correlation Same 28 6 Component Score Correlation
Items 0.386 0.450 0.490 0.456 r = 0.237 (p = .001) Items 0.021 0.161 0.828 0.718 r = 0.477 (p = .001)
Time 1 (0.017) (0.017) Time 2 (0.007) (0.007)

"High" 0.442 0.497 0.558 0.503 "High" 0.027 0.183 0.973 0.817
(0.190) (0.190) Model Correlation (0.008) (0.008) Model Correlation

150 152        = 0.366 45 201       = 0.787

(132) = 90.1 , p = n.s. (132) = 514.2 , p < .05
(132) = 128.5 , p = n.s. (132) = 206.8 , p < .05
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Table 22. Cont'd.
New Same Items Old Different Items
          Time 2           Time 2

            "Low"            "High"             "Low"            "High"
0.170 0.114 0.000 0.007 Raw Score Correlation 0.091 0.118 0.126 0.176 Raw Score Correlation
(0.018) (0.018)  r = 0.662  (p <.001) (0.017) (0.017)  r = 0.165  (p <.001)

"Low" 0.553 0.941 0.447 0.059 "Low" 0.783 0.400 0.217 0.600
Old (0.043) (0.043) Old (0.002) (0.002)
Same 32 2 Component Score Correlation Diff. 24 36 Component Score Correlation
Items 0.184 0.300 0.646 0.579 r = 0.398 (p = .001) Items 0.106 0.147 0.676 0.559 r = 0.198 (p = .005)
Time 2 (0.018) (0.018) Time 1 (0.017) (0.017)

"High" 0.186 0.341 0.814 0.659 "High" 0.014 0.208 0.986 0.792
(0.035) (0.035) Model Correlation (0.002) (0.002) Model Correlation

84 162        = 0.638 30 114       = 0.101

(78) = 95.3  , p < .05 (222) = 139.1 , p = n.s.
(132) = 202.4 , p < .05 (222) = 165.6 , p = n.s.

New Different Items New Different Items
          Time 1           Time 2

            "Low"            "High"             "Low"            "High"
0.306 0.196 0.001 0.142 Raw Score Correlation 0.193 0.171 0.000 0.089 Raw Score Correlation
(0.001) (0.001)  r = 0.653  (p <.001) (0.017) (0.017)  r = 0.623  (p <.001)

"Low" 0.847 0.580 0.153 0.420 "Low" 0.656 0.658 0.344 0.342
Old (0.039) (0.039) Old (0.061) (0.061)
Diff. 65 47 Component Score Correlation Diff. 48 25 Component Score Correlation
Items 0.000 0.084 0.693 0.578 r = 0.477 (p = .001) Items 0.010 0.075 0.707 0.664 r = 0.593 (p = .001)
Time 1 (0.001) (0.001) Time 2 (0.017) (0.017)

"High" 0.026 0.127 0.974 0.873 "High" 0.161 0.101 0.839 0.899
(0.023) (0.023) Model Correlation (0.039) (0.039) Model Correlation

28 192        = 1.000 21 186       = 0.884

(132) = 344.1 , p < .05 (132) = 219.3 , p < .05
(132) = 207.8 , p < .05 (132) = 156.6 , p = n.s.
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Note:  Within each panel, correlations with the same letter are non-significantly different.
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Table 22. Cont'd.
New Same Items New Different Items
          Time 2           Time 1

            "Low"            "High"             "Low"            "High"
0.244 0.250 0.197 0.221 Raw Score Correlation 0.410 0.235 0.118 0.301 Raw Score Correlation
(0.019) (0.019)  r = 0.336  (p <.001) (0.001) (0.001)  r = 0.468  (p <.001)

"Low" 1.000 0.531 0.000 0.469 "Low" 0.417 0.438 0.583 0.562
New (0.122) (0.122) New (0.082) (0.082)
Same 51 45 Component Score Correlation Same 78 100 Component Score Correlation
Items 0.106 0.132 0.454 0.397 r = 0.289 (p = .001) Items 0.000 0.045 0.472 0.419 r = 0.378 (p = .001)
Time 1 (0.019) (0.019) Time 1 (0.001) (0.001)

"High" 0.229 0.250 0.771 0.750 "High" 0.137 0.097 0.863 0.903
(0.021) (0.021) Model Correlation (0.022) (0.022) Model Correlation

27 81        = 0.210 15 139       = 0.612

(78) = 95.3  , p = n.s. (132) = 162.4 , p < .05
(222) = 153.8 , p = n.s. (132) = 171.4 , p < .05

New Different Items New Different Items
          Time 2           Time 2

            "Low"            "High"             "Low"            "High"
0.308 0.204 0.053 0.211 Raw Score Correlation 0.252 0.113 0.130 0.132 Raw Score Correlation
(0.014) (0.014)  r = 0.649  (p <.001) (0.024) (0.024)  r = 0.427  (p <.001)

"Low" 1.000 0.491 0.000 0.509 "Low" 1.000 0.460 0.000 0.540
New (0.005) (0.005) New (0.089) (0.089)
Same 57 59 Component Score Correlation Diff. 23 27 Component Score Correlation
Items 0.020 0.043 0.619 0.543 r = 0.478 (p = .001) Items 0.102 0.142 0.516 0.613 r = 0.351 (p = .001)
Time 2 (0.014) (0.014) Time 1 (0.024) (0.024)

"High" 0.025 0.073 0.975 0.927 "High" 0.126 0.188 0.874 0.812
(0.002) (0.002) Model Correlation (0.021) (0.021) Model Correlation

12 152        = 0.598 29 125       = 0.288

(132) = 117.5 , p = n.s. (78) = 72.7 , p = n.s.
(132) = 131.0 , p = n.s. (78) = 92.1 , p = n.s.
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Note:  Within each panel, correlations with the same letter are non-significantly different.
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Table 23.  Joint Two Component Frequency Tables and Model Estimates for Females on Same and Different, Old and New Items at Times 1 and 2.
Old Same Items Old Different Items
          Time 2           Time 1

            "Low"            "High"             "Low"            "High"
0.152 0.070 0.083 0.113 Raw Score Correlation 0.238 0.125 0.025 0.042 Raw Score Correlation
(0.037) (0.037)  r = 0.350  (p <.003) (0.026) (0.026)  r = 0.250  (p <.006)

"Low" 0.644 0.385 0.356 0.615 "Low" 1.000 0.750 0.000 0.250
Old (0.153) (0.153) Old (0.110) (0.110)
Same 5 8 Component Score Correlation Same 15 5 Component Score Correlation
Items 0.098 0.127 0.667 0.690 r = 0.223 (p = .062) Items 0.256 0.375 0.481 0.458 r = 0.224 (p = .014)
Time 1 (0.037) (0.037) Time 1 (0.026) (0.026)

"High" 0.126 0.155 0.874 0.845 "High" 0.352 0.450 0.648 0.550
(0.048) (0.048) Model Correlation (0.034) (0.034) Model Correlation

9 49        = 0.291 45 55       = 0.155

(78) = 95.3  , p < .05 (132) = 113.6 , p = n.s.
(78) = 115.2 , p < .05 (132) = 161.6 , p < .05

New Same Items Old Different Items
          Time 1           Time 2

            "Low"            "High"             "Low"            "High"
0.260 0.157 0.000 0.008 Raw Score Correlation 0.265 0.165 0.001 0.031 Raw Score Correlation
(0.031) (0.031)  r = 0.440  (p <.001) (0.024) (0.024)  r = 0.648  (p <.001)

"Low" 1.000 0.950 0.000 0.050 "Low" 1.000 0.842 0.000 0.158
Old (0.134) (0.134) Old (0.089) (0.089)
Same 19 1 Component Score Correlation Same 16 3 Component Score Correlation
Items 0.560 0.636 0.180 0.198 r = 0.172 (p = .059) Items 0.099 0.237 0.635 0.567 r = 0.443 (p = .001)
Time 1 (0.031) (0.031) Time 2 (0.024) (0.024)

"High" 0.748 0.762 0.252 0.238 "High" 0.136 0.295 0.864 0.705
(0.041) (0.041) Model Correlation (0.032) (0.032) Model Correlation

77 24        = 0.366 23 55       = 0.616

(132) = 90.1 , p = n.s. (132) = 514.2 , p < .05
(132) = 128.5 , p = n.s. (132) = 206.8 , p < .05
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Table 23. Cont'd.
New Same Items Old Different Items
          Time 2           Time 2

            "Low"            "High"             "Low"            "High"
0.313 0.196 0.000 0.000 Raw Score Correlation 0.276 0.257 0.231 0.271 Raw Score Correlation
(0.046) (0.046)  r = 0.641  (p <.001) (0.035) (0.035)  r = 0.360  (p <.002)

"Low" 0.752 1.000 0.248 0.000 "Low" 0.884 0.486 0.116 0.514
Old (0.051) (0.051) Old (0.030) (0.030)
Same 19 0 Component Score Correlation Diff. 18 19 Component Score Correlation
Items 0.272 0.402 0.415 0.402 r = 0.405 (p = .001) Items 0.096 0.143 0.397 0.329 r = 0.187 (p = .121)
Time 2 (0.046) (0.046) Time 1 (0.035) (0.035)

"High" 0.000 0.500 1.000 0.500 "High" 0.197 0.303 0.803 0.697
(0.208) (0.208) Model Correlation (0.146) (0.146) Model Correlation

39 39        = 0.801 10 23       = 0.205

(78) = 95.3  , p < .05 (222) = 139.1 , p = n.s.
(132) = 202.4 , p < .05 (222) = 165.6 , p < .05

New Different Items New Different Items
          Time 1           Time 2

            "Low"            "High"             "Low"            "High"
0.475 0.333 0.011 0.167 Raw Score Correlation 0.395 0.299 0.000 0.103 Raw Score Correlation
(0.019) (0.019)  r = 0.561  (p <.001) (0.038) (0.038)  r = 0.610  (p <.001)

"Low" 0.897 0.667 0.103 0.333 "Low" 0.746 0.744 0.254 0.256
Old (0.054) (0.054) Old (0.063) (0.063)
Diff. 40 20 Component Score Correlation Diff. 29 10 Component Score Correlation
Items 0.276 0.175 0.238 0.325 r = 0.317 (p = .001) Items 0.120 0.072 0.485 0.526 r = 0.632 (p = .001)
Time 1 (0.019) (0.019) Time 2 (0.038) (0.038)

"High" 0.043 0.350 0.957 0.650 "High" 0.000 0.121 1.000 0.879
(0.087) (0.087) Model Correlation (0.209) (0.209) Model Correlation

21 39        = 0.448 7 51       = 0.930

(132) = 344.7 , p < .05 (132) = 219.3 , p < .05
(132) = 201.8 , p < .05 (132) = 156.6 , p = n.s.
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Table 23. Cont'd.
New Same Items New Different Items
          Time 2           Time 1

            "Low"            "High"             "Low"            "High"
0.598 0.535 0.193 0.239 Raw Score Correlation 0.74 0.446 0.102 0.347 Raw Score Correlation
(0.041) (0.041)  r = 0.401  (p <.001) (0.025) (0.025)  r = 0.354  (p <.001)

"Low" 1.000 0.691 0.000 0.309 "Low" 0.544 0.563 0.456 0.438
New (0.175) (0.175) New (0.069) (0.069)
Same 38 17 Component Score Correlation Same 54 42 Component Score Correlation
Items 0.000 0.028 0.209 0.197 r = 0.357 (p = .001) Items 0.027 0.066 0.131 0.140 r = 0.196 (p = .031)
Time 1 (0.041) (0.041) Time 1 (0.025) (0.025)

"High" 0.403 0.125 0.597 0.875 "High" 0.196 0.320 0.804 0.680
(0.063) (0.063) Model Correlation (0.070) (0.070) Model Correlation

2 14        = 0.257 8 17       = 0.351

(78) = 95.3  , p = n.s. (132) = 163.0 , p < .05
(222) = 165.2 , p = n.s. (132) = 170.9 , p < .05

New Different Items New Different Items
          Time 2           Time 2

            "Low"            "High"             "Low"            "High"
0.564 0.309 0.074 0.289 Raw Score Correlation 0.561 0.310 0.183 0.183 Raw Score Correlation
(0.033) (0.033)  r = 0.517  (p <.001) (0.049) (0.049)  r = 0.457  (p <.001)

"Low" 0.980 0.517 0.020 0.483 "Low" 1.000 0.629 0.000 0.371
New (0.040) (0.040) New (0.100) (0.100)
Same 30 28 Component Score Correlation Diff. 22 13 Component Score Correlation
Items 0.006 0.062 0.356 0.340 r = 0.369 (p = .001) Items 0.001 0.085 0.256 0.423 r = 0.473 (p = .001)
Time 2 (0.033) (0.033) Time 1 (0.049) (0.049)

"High" 0.537 0.154 0.463 0.846 "High" 0.209 0.167 0.791 0.833
(0.037) (0.037) Model Correlation (0.060) (0.060) Model Correlation

6 33        = 0.494 6 30       = 0.282

(132) = 117.4 , p = n.s. (78) = 72.7 , p = n.s.
(132) = 131.0 , p = n.s. (78) = 92.1 , p = n.s.
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Table 24.  Joint Two Component Frequency Tables and Model Estimates for Penn State Subjects on Same and Different, Old and New Items
 at Times 1 and 2.

Old Same Items Old Different Items
          Time 2           Time 1

            "Low"            "High"             "Low"            "High"
0.048 0.026 0.060 0.083 Raw Score Correlation 0.15 0.089 0.002 0.026 Raw Score Correlation
(0.016) (0.016)  r = 0.167  (p <.012) (0.012) (0.012)  r = 0.374  (p <.001)

"Low" 0.440 0.240 0.560 0.760 "Low" 1.000 0.775 0.000 0.225
Old (0.153) (0.153) Old (0.096) (0.096)
Same 6 19 Component Score Correlation Same 31 9 Component Score Correlation
Items 0.148 0.140 0.744 0.750 r = 0.069 (p = .299) Items 0.184 0.295 0.664 0.590 r = 0.289 (p = .001)
Time 1 (0.016) (0.016) Time 1 (0.012) (0.012)

"High" 0.167 0.158 0.833 0.842 "High" 0.225 0.333 0.775 0.667
(0.018) (0.018) Model Correlation (0.014) (0.014) Model Correlation

32 171        = 0.071 103 206        = 0.438

(78) = 94.7 , p = n.s. (132) = 132 , p = n.s.
(78) = 96.3 , p = n.s. (132) = 157 , p = n.s.

New Same Items Old Different Items
          Time 1           Time 2

            "Low"            "High"             "Low"            "High"
0.154 0.105 0.000 0.009 Raw Score Correlation 0.196 0.141 0.000 0.022 Raw Score Correlation
(0.015) (0.015)  r = 0.426  (p <.001) (0.013) (0.013)  r = 0.792  (p <.001)

"Low" 1.000 0.925 0.000 0.075 "Low" 1.000 0.864 0.000 0.136
Old (0.120) (0.120) Old (0.070) (0.070)
Same 37 3 Component Score Correlation Same 38 6 Component Score Correlation
Items 0.450 0.507 0.396 0.379 r = 0.230 (p = .001) Items 0.035 0.159 0.769 0.678 r = 0.543 (p = .001)
Time 1 (0.015) (0.015) Time 2 (0.013) (0.013)

"High" 0.531 0.572 0.469 0.428 "High" 0.045 0.190 0.955 0.810
(0.017) (0.017) Model Correlation (0.017) (0.017) Model Correlation

178 133        = 0.401 43 183        = 0.790

(132) = 115 , p = n.s. (132) = 429 , p = n.s.
(132) = 133 , p = n.s. (132) = 200 , p = n.s.
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Note:  Within each panel, correlations with the same letter are non-significantly different.
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Table 24 Cont'd.  
New Same Items Old Different Items
          Time 2           Time 2

            "Low"            "High"             "Low"            "High"
0.217 0.033 0.000 0.076 Raw Score Correlation 0.126 0.033 0.159 0.076 Raw Score Correlation
(0.021) (0.021)  r = 0.205  (p <.001) (0.018) (0.018)  r = 0.205  (p <.001)

"Low" 1.000 0.300 0.000 0.700 "Low" 0.443 0.300 0.557 0.700
Old (0.107) (0.107) Old (0.062) (0.062)
Same 9 21 Component Score Correlation Diff. 9 21 Component Score Correlation
Items 0.160 0.116 0.623 0.775 r = 0.148 (p = .014) Items 0.12 0.116 0.594 0.775 r = 0.148 (p = .014)
Time 2 (0.021) (0.021) Time 1 (0.018) (0.018)

"High" 0.213 0.131 0.787 0.869 "High" 0.169 0.131 0.831 0.869
(0.026) (0.026) Model Correlation (0.024) (0.024) Model Correlation

32 213        = 0.795 32 213        = 0.158

(132) = 307 , p = n.s. (222) = 165 , p = n.s.
(132) = 187 , p = n.s. (222) = 193 , p = n.s.

New Different Items New Different Items
          Time 1           Time 2

            "Low"            "High"             "Low"            "High"
0.328 0.033 0.007 0.076 Raw Score Correlation 0.251 0.033 0.000 0.076 Raw Score Correlation
(0.011) (0.011)  r = 0.205  (p <.001) (0.018) (0.018)  r = 0.205  (p <.001)

"Low" 0.985 0.300 0.015 0.700 "Low" 1.000 0.300 0.000 0.700
Old (0.034) (0.034) Old (0.072) (0.072)
Diff. 9 21 Component Score Correlation Diff. 9 21 Component Score Correlation
Items 0.182 0.116 0.483 0.775 r = 0.148 (p = .014) Items 0.083 0.116 0.666 0.775 r = 0.148 (p = .014)
Time 1 (0.011) (0.011) Time 2 (0.018) (0.018)

"High" 0.274 0.131 0.726 0.869 "High" 0.111 0.131 0.889 0.869
(0.017) (0.017) Model Correlation (0.024) (0.024) Model Correlation

32 213        = 0.682 32 213        = 0.957

(132) = 248 , p = n.s. (132) = 205 , p = n.s.
(132) = 196 , p = n.s. (132) = 155 , p = n.s.
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Note:  Within each panel, correlations with the same letter are non-significantly different.
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Table 24 Cont'd.
New Same Items New Different Items
          Time 2           Time 1

            "Low"            "High"             "Low"            "High"
0.306 0.033 0.225 0.076 Raw Score Correlation 0.517 0.033 0.097 0.076 Raw Score Correlation
(0.018) (0.018)  r = 0.205  (p <.001) (0.015) (0.015)  r = 0.205  (p <.001)

"Low" 0.576 0.300 0.424 0.700 "Low" 0.843 0.300 0.157 0.700
New (0.033) (0.033) New (0.024) (0.024)
Same 9 21 Component Score Correlation Same 9 21 Component Score Correlation
Items 0.090 0.116 0.379 0.775 r = 0.148 (p = .014) Items 0.030 0.116 0.356 0.775 r = 0.148 (p = .014)
Time 1 (0.018) (0.018) Time 1 (0.015)

"High" 0.188 0.131 0.812 0.869 "High" 0.080 0.131 0.920 0.869
(0.039) (0.039) Model Correlation (0.038) (0.038) Model Correlation

32 213        = 0.207 32 213        = 0.454

(222) = 185 , p = n.s. (132) = 138 , p = n.s.
(222) = 190 , p = n.s. (132) = 158 , p = n.s.

New Different Items New Different Items
          Time 2           Time 2

            "Low"            "High"             "Low"            "High"
0.354 0.033 0.053 0.076 Raw Score Correlation 0.305 0.033 0.173 0.076 Raw Score Correlation
(0.016) (0.016)  r = 0.205  (p <.001) (0.022) (0.022)  r = 0.205  (p <.001)

"Low" 0.871 0.300 0.129 0.700 "Low" 0.634 0.300 0.366 0.700
New (0.040) (0.040) New (0.045) (0.045)
Same 9 21 Component Score Correlation Diff. 9 21 Component Score Correlation
Items 0.033 0.116 0.560 0.775 r = 0.148 (p = .014) Items 0.084 0.116 0.438 0.775 r = 0.148 (p = .014)
Time 2 (0.016) (0.016) Time 1 (0.022) (0.022)

"High" 0.056 0.131 0.944 0.869 "High" 0.152 0.131 0.848 0.869
(0.027) (0.027) Model Correlation (0.044) (0.044) Model Correlation

32 213        = 0.518 32 213        = 0.231

(132) = 141 , p = n.s. (78) = 97.5 , p = n.s.
(132) = 134 , p = n.s. (78) = 112 , p = n.s.

J I

L K

χ 2L2 χ 2L2χ 2L2 χ 2L2χ 2L2 χ 2L2χ 2L2 χ 2L2

χ 2

L2
χ 2

L2

χ 2

L2
χ 2

L2

$ρ $ρ

$ρ$ρ

A

A

A

A

A

A

A

A

A

A

A

A

Note:  Within each panel, correlations with the same letter are non-significantly different.
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Table 25.  Joint Two Component Frequency Tables and Model Estimates for Cooper-Union Subjects on Same and Different, Old and New Items
 at Times 1 and 2.

Old Same Items Old Different Items
          Time 2           Time 1

            "Low"            "High"             "Low"            "High"
0.091 0.033 0.056 0.076 Raw Score Correlation 0.15 0.033 0.026 0.076 Raw Score Correlation
(0.038) (0.038)  r = 0.205  (p <.001) (0.027) (0.027)  r = 0.205  (p <.001)

"Low" 0.614 0.300 0.386 0.700 "Low" 0.898 0.300 0.102 0.700
Old (0.250) (0.250) Old (0.172) (0.172)
Same 9 21 Component Score Correlation Same 9 21 Component Score Correlation
Items 0.000 0.116 0.852 0.775 r = 0.148 (p = .014) Items 0.156 0.116 0.668 0.775 r = 0.148 (p = .014)
Time 1 (0.038) (0.038) Time 1 (0.027) (0.027)

"High" 0.000 0.131 1.000 0.869 "High" 0.197 0.131 0.803 0.869
(0.045) (0.045) Model Correlation (0.032) (0.032) Model Correlation

32 213         = -0.065 32 213        =  0.345

(78) = 20.1 , p = n.s. (132) = 41.7 , p = n.s.
(78) = 36.9 , p = n.s. (132) = 92.1 , p = n.s.

New Same Items Old Different Items
          Time 1           Time 2

            "Low"            "High"             "Low"            "High"
0.182 0.033 0.000 0.076 Raw Score Correlation 0.120 0.033 0.018 0.076 Raw Score Correlation
(0.039) (0.039)  r = 0.205  (p <.001) (0.018) (0.018)  r = 0.205  (p <.001)

"Low" 1.000 0.300 0.000 0.700 "Low" 1.000 0.300 0.000 0.700
Old (0.248) (0.248) Old (0.170) (0.170)
Same 9 21 Component Score Correlation Same 9 21 Component Score Correlation
Items 0.366 0.116 0.453 0.775 r = 0.148 (p = .014) Items 0.073 0.116 0.789 0.775 r = 0.148 (p = .014)
Time 1 (0.039) (0.039) Time 2 (0.018) (0.018)

"High" 0.449 0.131 0.551 0.869 "High" 0.100 0.131 0.900 0.869
(0.046) (0.046) Model Correlation (0.020) (0.020) Model Correlation

32 213        =  0.433 32 213        =  0.478

(132) = 48.6 , p = n.s. (132) = 47.6 , p = n.s.
(132) = 91.3 , p = n.s. (132) = 73.8 , p = n.s.
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Note:  Within each panel, correlations with the same letter are non-significantly different.
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Table 25 Cont'd.
New Same Items Old Different Items
          Time 2           Time 2

            "Low"            "High"             "Low"            "High"
0.162 0.033 0.000 0.076 Raw Score Correlation 0.225 0.033 0.093 0.076 Raw Score Correlation
(0.028) (0.028)  r = 0.205  (p <.001) (0.035) (0.035)  r = 0.205  (p <.001)

"Low" 1.000 0.300 0.000 0.700 "Low" 0.716 0.300 0.284 0.700
Old (0.266) (0.266) Old (0.114) (0.114)
Same 9 21 Component Score Correlation Diff. 9 21 Component Score Correlation
Items 0.336 0.116 0.501 0.775 r = 0.148 (p = .014) Items 0.0103 0.116 0.671 0.775 r = 0.148 (p = .014)
Time 2 (0.028) (0.028) Time 1 (0.035) (0.035)

"High" 0.408 0.131 0.592 0.869 "High" 0.024 0.131 0.976 0.869
(0.031) (0.031) Model Correlation (0.050) (0.050) Model Correlation

32 213        =  0.536 32 213        =  0.148

(132) = 40.6 , p = n.s. (222) = 35 , p = n.s.
(132) = 87 , p = n.s. (222) = 82.1 , p = n.s.

New Different Items New Different Items
          Time 1           Time 2

            "Low"            "High"             "Low"            "High"
0.290 0.033 0.002 0.076 Raw Score Correlation 0.224 0.033 0.001 0.076 Raw Score Correlation
(0.030) (0.030)  r = 0.205  (p <.001) (0.026) (0.026)  r = 0.205  (p <.001)

"Low" 0.970 0.300 0.030 0.700 "Low" 1.000 0.300 0.000 0.700
Old (0.098) (0.098) Old (0.131) (0.131)
Diff. 9 21 Component Score Correlation Diff. 9 21 Component Score Correlation
Items 0.137 0.116 0.572 0.775 r = 0.148 (p = .014) Items 0.164 0.116 0.611 0.775 r = 0.148 (p = .014)
Time 1 (0.030) (0.030) Time 2 (0.026) (0.026)

"High" 0.186 0.131 0.814 0.869 "High" 0.220 0.131 0.780 0.869
(0.043) (0.043) Model Correlation (0.033) (0.033) Model Correlation

32 213        =  0.561 32 213        =  0.711

(132) = 93 , p = n.s. (132) = 69 , p = n.s.
(132) = 112 , p = n.s. (132) = 94.5 , p = n.s.
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Note:  Within each panel, correlations with the same letter are non-significantly different.
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Table 25 Cont'd.
New Same Items New Different Items
          Time 2           Time 1

            "Low"            "High"             "Low"            "High"
0.462 0.033 0.071 0.076 Raw Score Correlation 0.382 0.033 0.170 0.076 Raw Score Correlation
(0.025) (0.025)  r = 0.205  (p <.001) (0.029) (0.029)  r = 0.205  (p <.001)

"Low" 0.859 0.300 0.141 0.700 "Low" 0.692 0.300 0.308 0.700
New (0.046) (0.046) New (0.052) (0.052)
Same 9 21 Component Score Correlation Same 9 21 Component Score Correlation
Items 0.025 0.116 0.442 0.775 r = 0.148 (p = .014) Items 0.047 0.116 0.400 0.775 r = 0.148 (p = .014)
Time 1 (0.025) (0.025) Time 1 (0.029) (0.029)

"High" 0.041 0.131 0.959 0.869 "High" 0.105 0.131 0.895 0.869
(0.055) (0.055) Model Correlation (0.065) (0.065) Model Correlation

32 213        =  0.526 32 213        =  0.424

(222) = 47.5 , p = n.s. (132) = 70.4 , p = n.s.
(222) = 84.3 , p = n.s. (132) = 91.4 , p = n.s.

New Different Items New Different Items
          Time 2           Time 2

            "Low"            "High"             "Low"            "High"
0.412 0.033 0.079 0.076 Raw Score Correlation 0.438 0.033 0.025 0.076 Raw Score Correlation
(0.030) (0.030)  r = 0.205  (p <.001) (0.032) (0.032)  r = 0.205  (p <.001)

"Low" 0.834 0.300 0.166 0.700 "Low" 0.940 0.300 0.060 0.700
New (0.061) (0.061) New (0.068) (0.068)
Same 9 21 Component Score Correlation Diff. 9 21 Component Score Correlation
Items 0.001 0.116 0.508 0.775 r = 0.148 (p = .014) Items 0.044 0.116 0.493 0.775 r = 0.148 (p = .014)
Time 2 (0.030) (0.030) Time 1 (0.032) (0.032)

"High" 0.000 0.131 1.000 0.869 "High" 0.077 0.131 0.923 0.869
(0.061) (0.061) Model Correlation (0.060) (0.060) Model Correlation

32 213        =  0.498 32 213        =  0.640

(132) = 27.1 , p = n.s. (78) = 87.2 , p = n.s.
(132) = 74.2 , p = n.s. (78) = 65.2 , p = n.s.
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Note:  Within each panel, correlations with the same letter are non-significantly different.
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 Table 26.  Patterns of Joint Proportion Estimates (π's).

          Variable Y           Variable Y           Variable Y

A. "Low" "High" B. "Low" "High" C. "Low" "High"

Variable X
"Low" X O

Variable X
"Low" X X

Variable X
Low" X O

"High" O X "High" O X "High" X X

 Note:  X's represent large proportions (πab-estimates), while O's represent small proportions (πab-estimates).
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                    Table 27.  Joint Two Component and Univariate Three Component Model Comparison.

    Univariate Three Component Membership
Joint Two Component
Membership

Old Items at Time 1

Old Same 
Items at 
Time 1

Old 
Different 
Items at 
Time 1 Low Intermediate High

Low Low 30 8 0

Low High 2 11 0

High Low 29 107 0

High High 0 36 231

(6) = 443.7, p<.0001

    Univariate Three Component Membership
Joint Two Component
Membership

New Items at Time 1
New 
Same 
Items at 
Time 1

New 
Different 
Items at 
Time 1 Low Intermediate High

Low Low 120 12 0

Low High 28 114 0

High Low 4 20 0

High High 0 37 119

(6) = 529.5, p<.0001

χ 2

χ 2
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            Table 28.  Joint Three Component Frequency Tables and Model Estimates for All Subjects on Old and New Items
            at Times 1 and 2.

New Items, Time 1

          "Low"      "Intermediate"           "High"
0.136 0.099 0.000 0.033 0.000 0.002
(0.011) (0.015) (0.007) Raw Score Correlation

"Low" 0.997 0.738 0.001 0.246 0.001 0.016 r = 0.618 (p < 0.001)
(0.077) (0.110) (0.053)

45 15 1
0.223 0.163 0.020 0.154 0.002 0.040

Old (0.020) (0.023) (0.010) Component Score Correlation
Items "Inter." 0.915 0.457 0.078 0.432 0.007 0.111 r = 0.498 (p < 0.001)
Time 1 (0.081) (0.093) (0.039)

74 70 18
0.075 0.073 0.271 0.216 0.273 0.220
(0.016) (0.018) (0.006) Model Correlation

"High" 0.122 0.143 0.438 0.424 0.440 0.433       = 0.585
(0.025) (0.029) (0.010)

33 98 100

(565) = 274.7 , p = n.s.
(565) = 336.6 , p = n.s.

New Items, Time 2

          "Low"      "Intermediate"           "High"
0.163 0.119 0.000 0.008 0.000 0.000
(0.017) (0.030) (0.026) Raw Score Correlation

"Low" 0.959 0.938 0.021 0.063 0.021 0.000 r = 0.731 (p < 0.001)
(0.099) (0.174) (0.149)

45 3 0
0.097 0.088 0.029 0.125 0.000 0.050

Old (0.021) (0.032) (0.028) Component Score Correlation
Items "Inter." 1.000 0.333 0.000 0.475 0.000 0.192 r = 0.631 (p < 0.001)
Time 2 (0.263) (0.403) (0.346)

33 47 19
0.028 0.040 0.258 0.225 0.425 0.345
(0.015) (0.026) (0.018) Model Correlation

"High" 0.053 0.065 0.362 0.370 0.585 0.565       = 0.895
(0.020) (0.034) (0.024)

15 85 130

(565) = 905.2 , p < 0.05
(565) = 433.2 , p = n.s.
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Note:  Within each panel, correlations with the same letter are non-significantly different.
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               Table 28 Cont'd.

Old Items, Time 2

          "Low"      "Intermediate"           "High"
0.037 0.025 0.030 0.051 0.026 0.036
(0.015) (0.022) (0.019) Raw Score Correlation

"Low" 0.393 0.226 0.322 0.452 0.284 0.323 r = 0.250 (p < 0.001)
(0.147) (0.226) (0.187)

7 14 10
0.050 0.058 0.075 0.124 0.126 0.167

Old (0.020) (0.030) (0.027) Component Score Correlation
Items "Inter." 0.191 0.167 0.297 0.354 0.512 0.479 r = 0.306 (p < 0.001)
Time 1 (0.084) (0.125) (0.115)

16 34 46
0.077 0.044 0.000 0.084 0.580 0.411
(0.016) (0.022) (0.022) Model Correlation

"High" 0.119 0.081 0.003 0.155 0.878 0.764       = 0.194
(0.024) (0.034) (0.033)

12 23 113

(565) = 576.9 , p = n.s.
(565) = 352.1 , p = n.s.

New Items, Time 2

          "Low"      "Intermediate"           "High"
"Low" 0.216 0.149 0.117 0.109 0.027 0.036

(0.020) (0.026) (0.018) Raw Score Correlation
0.579 0.506 0.325 0.370 0.097 0.123 r = 0.450 (p < 0.001)
(0.050) (0.066) (0.047)

New 41 30 10
Items "Inter." 0.101 0.055 0.162 0.196 0.101 0.149
Time 1 (0.021) (0.041) (0.036) Component Score Correlation

0.262 0.136 0.476 0.491 0.261 0.373 r = 0.481 (p < 0.001)
(0.072) (0.144) (0.127)

15 54 41
"High" 0.000 0.036 0.000 0.051 0.276 0.218

(0.002) (0.031) (0.031) Model Correlation
0.050 0.119 0.050 0.167 0.901 0.714       = 0.355
(0.008) (0.097) (0.096)

10 14 60

(565) = 236.4 , p = n.s.
(565) = 280.3 , p = n.s.
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Note:  Within each panel, correlations with the same letter are non-significantly different.
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            Table 29.  Pattern of Membership in the Non-zero Cells in the Three Component Bivariate Mixture.

New Items, Time X

          "Low"      "Intermediate"           "High"

OS1 "Low" OD1 "Low"
"Low"               0               0

NS1 "Low" ND1 "Low"

Old OS1 "High" OD1 "Low"
Items "Inter."               0               0
Time X NS1 "Low" ND1 "Low"

OS1 "High" OD1"High" OS1 "High" OD1"High" OS1 "High" OD1"High"
"High"

NS1 "Low" ND1 "Low" NS1 "Low" ND1 "High" NS1 "High" ND1 "High"
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Figure 1.  State Change restrictions under the hypothesis that no learning occurs.  
Note That Each Row Sums to 1. 
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Figure 2.  Hypothetical Growth Function Over Two Time Points of the Kind Predicted by Piaget and   

    Inhelder (1956). 
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Figure 3.  Hypothetical Change In Probabilities Of Success Without Component Membership 
Change. 
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1

Figure 4.  Penn State Females' Performance on New-Same Items at Time 1, with Normal, 2- and 3- 
Component Binomial Mixture Estimates.  Sample size n = 93 for 15 items.
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2

Figure 5.  Penn State Females' Performance on New-Same Items at Time 2, with Normal, 2- and 3- 
Component Binomial Mixture Estimates.  Sample size n = 70 for 9 items.
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3

Figure 6.  Penn State Females' Performance on New-Different Items at Time 1, with Normal, 2- and 3- 
Component Binomial Mixture Estimates.  Sample size n = 93 for 9 items.
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4

Figure 7.  Penn State Females' Performance on New-Different Items at Time 2, with Normal, 2- and 3- 
Component Binomial Mixture Estimates.  Sample size n = 70 for 9 items.
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5

Figure 8.  Additive Shift Model of Sex-Differences.
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Figure 9.  Additive Shift Failure in Mental Rotation Performance.
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7

Figure 10.  Probability of Success (θ) Estimates for Each of the 32 Basic-level Groups.
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8

Figure 11.  Proportion (π) estimates for Each of the 32 Basic-level Groups.  Probabilities are the Lengths Referenced to the Ordinal Scale.
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Figure 12.  Expected and Observed Bimodal Distributions of Theta 1 and Theta 2 for the 32 Basic-Level Groups.
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9

Figure 13.  Old-different item "High" Component Proportion Estimates (π2) and Standard Errors for Penn State and Cooper-Union Males and 
Females at Time 1 and Time 2.
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Figure 14.  New-different item "High" Component Proportion Estimates (π2) and Standard Errors for Penn State and Cooper-Union Males and 
Females at Time 1 and Time 2.
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Figure 15.  Old-same item "High" Component Proportion Estimates (π2) and Standard Errors for Penn State and Cooper-Union Males and Females 
at Time 1 and Time 2.

0.688

0.815

0.721

0.876

0.732

0.863

0.68

0.828

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2

Penn State Females
Penn State Males
Cooper-Union Females
Cooper-Union Males

gfwt

gfwt
199



12

Figure 16.  New-Same item "High" Component Proportion Estimates (π2) and Standard Errors for Penn State and Cooper-Union Males and Females 
at Time 1 and Time 2.

0.433

0.645

0.283

0.57

0.197

0.469

0.17

0.551

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2

Time

Pr
op

or
tio

n

Penn State Females
Penn State Males
Cooper-Union Females
Cooper-Union Males

gfwt

gfwt
200



13

Figure 17.  "High" Component Mixing Proportions (π2) and Standard Errors for All Four Item-type by Item-status Sets for Time 1 and Time 2.
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Figure 18.  Female "High" Component Proportion Estimates (π2) and Standard Errors for Old and New Items.
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Figure 19. Male "High" Component Proportion Estimates (π2) and Standard Errors for Old and New Items.
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Figure 20.  "High" Component Proportion Estimates (π2) for Penn State and Cooper Union Subjects' Performance on All items at Time 1 and Time 
2.
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Figure 21.  "High" Component  Proportion Estimates (π2) for Male and Female Subjects' Performance on All items at Time 1 and Time 2.
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Figure 22.  "High" Component Proportion Estimate Differences (π2
(Time 1) - π2

(Time 2) for Penn State and Cooper-Union Males and Females on All 
items.
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Figure 23.  "Low," "Intermediate," and "High" Component Proportion Estimates (π's) and Standard Errors for All Subjects on Old and New Items.
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Figure 24.  "Low," "Intermediate," and "High" Component Proportion Estimates (π's) and Standard Errors for Penn State and Cooper-Union 
Subjects' Performance on All Items.
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Figure 25.  "Low," "Intermediate," and "High" Component Proportion Estimates (π's) and Standard Errors for Males and Females' Performance on 
All Items.
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Figure 26.  "Low," "Intermediate," and "High" Component Proportion Estimates (π's) and Standard Errors for All Subjects' Performance on "Same" 
and "Different" Items.
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Figure 27.  "Low," "Intermediate," and "High" Component Proportion Estimates (π's) and Standard Errors for All Subjects' Performance on All 
Items at Time 1 and Time 2.
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Figure 28.  “High” component mixing proportion Item-type by Item-status Interactions 
at Time 1 and Time 2.
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Figure 29.  X, Y, and Z axes of Mental Rotation Objects. 
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Panel A.  Initial 
Orientation of a Mental 
Rotation Object. 
 

 
 

                                                                      

Panel B.  45°X, -45°Z 
Rotation about the 
Centroid from the Initial 
Orientation. 
 

  
 

                                                                       

Panel C.  -45°Z, 45°X 
Rotation about the 
Centroid from the Initial 
Orientation. 
 

 Figure 30.  Non-commutative Property of Sequential Rotations About Two Axes. 
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Figure 31.  Scatterplot, Regression Lines, and 95% Confidence Bands for Accuracy Vs. Summed Angle of Rotation for "High" and "Low" 
Performers.  Encircled r2's are Significantly Different than Zero.
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Figure 32.  Scatterplot, Regression Lines, and 95% Confidence Bands for Accuracy Vs. Object-Defined Minimum Angle of Rotation for "High" 
and "Low" Performers.  Encirled r2's are Significantly Different from Zero.
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Figure 33.  Scatterplot, Regression Lines, and 95% Confidence Bands for Accuracy Vs. Rotation on the X-axis for "High" and "Low" Performers.  
Encircled r2's are Significantly Different from Zero.
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Figure 34.  Scatterplot, Regression Lines, and 95% Confidence Bands for Accuracy Vs. Rotation on the Y-Axis for "High" and "Low" Performers.  
Encircled r2's are Significantly Different from Zero.
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Figure 35.  Scatterplot, Regression Lines, and Confidence Bands for Accuracy Vs. Angle of Rotation About the Z-axis for "High" and "Low" 
Performers.  Encircled r2's are Significantly Different than Zero.
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Figure 36.  Scatterplot, Regression Lines, and 95% Confidence Bands for Accuracy Vs. Summed Angle of Rotation for Male and Female "High" 
and "Low" Performers.  Encircled r2's are Significantly Different from Zero.
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Figure 37.  Scatterplot, Regression Lines, and 95% Confidence Bands for Accuracy Vs. Object-Defined Minimum Angle of Rotation for Male and 
Female "High" and "Low" Performers.  Encircled r2's are Significantly Different from Zero.
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Figure 38.  Scatterplot, Regression Lines, and 95% Confidence Bands for Accuracy Vs. Rotation on the X-Axis for Male and Female "High" and 
"Low" Performers.  Encircled r2's are Significantly Different from Zero.
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Figure 39.  Scatterplot, Regression Lines, and 95% Confidence Bands for Accuracy Vs. Angle of Rotation About the Y-Axis for Male and Female 
"High" and "Low" Performers.  Encircled r2's are Significantly Different from Zero.
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Figure 40.  Scatterplot, Regression Lines, and 95% Confidence Bands for Accuracy Vs. Angle of Rotation About the Z-axis for Male and Female 
"High" and "Low" Performers.  Encircled r2's are Significantly Different from Zero.
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Figure 41.  "Low" Component Success Rates on Old-same Items at Time 2.

0

0.5

1

1.5

2

2.5

3

3.5

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
Percent Subjects Responding Correctly

Fr
eq

ue
nc

y

X

+ 2σ− 2σ

gfwt
225

gfwt



35

Figure 42.  "High" Component Success Rates on Old-Same Items at Time 2.
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Figure 43.  "Low" Component Success Rates on Old Items at Time 2.
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Figure 44.  "Intermediate" Component Success Rates on Old Items at Time 2.
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Figure 45.  "High" Component Success Rates on Old Items at Time 2.
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Figure 46.  Inter-item Correlations on Old-different Items at Time 2 for the "Low" Component.
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Figure 47.  Inter-item Correlations on Old-different Items at Time 2 for the "High" Component.
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Figure 48.  Inter-item Correlations on Old Items at Time 2 for the "Low" Component.
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Figure 49.  Inter-item Correlations on Old Items at Time 2 for the "Intermediate" Component.
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Figure 50.  Inter-item Correlations on Old-items at Time 2 for the "High" Component.
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Figure 62.  Male and Female "High" Component Proportion Estimates over Time with a Logarithmic Regression Function.
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APPENDIX B 

Model Development and Estimation  

in Bivariate Binomial Mixtures 

 The joint three component binomial model is described below, while the joint two 

component model is described in Thomas and Lohaus (1993).  Both joint models are constrained 

so that the marginal distributions are mixed binomial.  The three component bivariate model is 

based on three component mixed binomial marginal distributions given by 

f (x) = π
x1

b(x;θ
x1

) + π
x2

b(x;θ
x2

) + (1 - π
x1

 - π
x2

)b(x;θ
x3

)                  (25) 

f (y) = π
y1

b(y;θ
y1

) + π
y2

b(y;θ
y2

) + (1 - π
y1

 - π
y2

)b(y;θ
y3

)                    (26) 

Equation 25 represents the same distribution as Equation 4 (p. 25), but π
x1

replaces π
1
 to 

distinguish it from the distribution of Y.  Here b(x;θ
x1

) = b(x; θ
x1

, n) where n is suppressed  

defines the familiar binomial distribution with success parameter θ.  Now define the conditional 

distribution of Y given X=x by 

   f (y|x) = π
y1|x

b(y;θ
y1

) +  π
y2|x

b(y;θ
y2

)  + (1 - π
y1|x

 - π
y2|x

)b(y;θ
y3

)         (27) 

The conditional weight π
ya|x

 = τ
1b

P(1|X) +  τ
2b

P(2|X) + τ
3b

P(3|X), where the τ's represent 

transition parameters. As in the two component joint model from Thomas and Lohaus (1993), the 

τ
ab

’s are transition parameters which represent state change probabilities, and a and b index the 

components of X and Y respectively, a = 1,2,...,A and b = 1,2,...,B.  With X1, X2, X3, Y1, Y2 

and  Y3 denoting the first, second, and third components of X and Y respectively, then τ
11

 is the 

probability of changing from X1 to Y1,  τ
12

 is the probability of changing from X1 to Y2, and (1 
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- τ
11

- τ
12

)= τ
13

 is the probability of changing from X1 to Y3.  Similarly, τ
2b

 and τ
3b

 represent 

the probability of changing from X2 and X3, and  (1 - τ
a1

 - τ
a2

) = τ
a3

, so 

   
b=1

B

∑ τ
ab

 = 1       (29) 

for all a, leaving AB - A τ parameters free.  To show the constraints on the τ, there are AB τ 

values; from Equation 29, this number is reduced to AB - A.  From Equation 32 below, 

f (y) = 
x
∑ f (y|x) = 

x
∑

a=1

A

∑
b=1

B

∑  t
ab

 π
xa

b(x;θ
xa

) b(y;θ
yb

) 

 

         = 
a=1

A

∑
b=1

B

∑  t
ab

 π
xa

b(y;θ
yb

) 
x
∑ b(x;θ

xa
) 

 

    =  
a=1

A

∑
b=1

B

∑  τ
ab

 π
xa

b(y;θ
yb

),            (30) 

so  

                               
a=1

A

∑
b=1

B

∑  τ
ab

 π
xa

 = π
yb

.       (31) 

This constraint forces B - 1 additional constraints, so the number of free parameters in the model 

is AB - A - (B-1) = (A - 1)(B - 1). 

 

To find the joint distribution of X and Y, 

f (x,y) = f (y|x) f (x) = 

= τ
11

π
x1
 b(x;θ

x1
)b(y;θ

y1
) + τ

21
π
x2
 b(x;θ

x2
)b(y;θ

y1
) +  

 τ
31

(1 - π
x1
 -π

x2
 )b(x;θ

x3
)b(y;θ

y1
) + τ

12
π
x1
 b(x;θ

x1
)b(y;θ

y2
) +  

263



 

 τ
22

π
x2
 b(x;θ

x2
)b(y;θ

y2
) + τ

32
(1 - π

x1
 -π

x2
 )b(x;θ

x3
)b(y;θ

y2
) +  

τ
13

π
x1
 b(x;θ

x1
)b(y;θ

y3
) + τ

23
π
x2
 b(x;θ

x2
)b(y;θ

y3
) +  

τ
33

(1 - π
x1
 -π

x2
 )b(x;θ

x3
)b(y;θ

y3
) 

=   
a=1

A

∑
b=1

B

∑ τ
ab

π
xa

 b(x;θ
xa

)b(y;θ
yb

)                                   (32) 

The mean and variance of X and Y are given above by Equations 6 and 7, (p. 28).  In the 

bivariate three component case  

E(Y|x) = m[π
y1|x

θ
y1

 + π
y2|x

θ
y2

 + (1 - π
y1|x

 - π
y2|x

)θ
y3

],                        (33) 

where m is the number of Bernoulli trials. E(X|y) is calculated similarly with the role of X and Y 

interchanged.  The E(XY) is given by 

E(XY) = m
2
[

a=1

A

∑
b=1

B

∑ τ
ab

π
xa

θ
xa

θ
yb

],                                                               (34) 

where m is the number of Bernoulli trials.  From this, the correlation between X and Y can be 

calculated. 

                                            E(XY) - E(X)E(Y) 
ρ  =  corr (X,Y)  =                                         .            (35) 

                    [V(X)V(Y)]
1/2

   

 
By substituting estimates for the parameters in Equation (32), the model correlation coefficient 

ρ̂ can be computed. 
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APPENDIX C

Model Chi-Square Goodness-of-Fit Statistics

265

Binomial Mixture

Basic- Normal Distribution Two Component Three Component
Level 
Group df df df
PFOS1 66.95* 12 6.49 7.27 6 6.49 7.27 4
PFOD1 111.79* 21 10100* 25.90 12 8.02 8.36 10
PFNS1 16.75 12 3.13 3.18 6 3.13 3.18 4
PFND1 21.33 21 1.53 1.65 12 1.53 1.65 10
PFOS2 63.637* 12 6.83 8.97 6 6.83 8.97 4
PFOD2 78.91* 21 21.10 16.80 12 20.00 16.60 10
PFNS2 30.68* 12 8.37 8.74 6 7.33 7.72 4
PFND2 28.63 21 4.75 4.87 12 4.74 4.87 10
PMOS1 275.26* 12 0.69 0.92 6 0.74 1.00 4
PMOD1 3724.0* 21 118000* 53.8* 12 22.90 17.80 10
PMNS1 101.25* 12 17.00 16.50 6 9.04 11.30 4
PMND1 140.64* 21 20.10 10.60 12 2.00 1.98 10
PMOS2 328.40* 12 18.40 17.70 6 18.20* 17.50* 4
PMOD2 317.44* 21 28.30* 27.30 12 9.51 10.20 10
PMNS2 144.11* 12 20.50* 23.70* 6 13.90 17.10* 4
PMND2 119.45* 21 2.88 3.46 12 2.89 3.46 10
CFOS1 15.00 12 3.57 3.82 6 3.41 3.69 4
CFOD1 33.70 21 19.60 12.30 12 14.30 11.70 10
CFNS1 8.99 12 15.40 11.20 6 6.49 7.13 4
CFND1 11.81 21 1.62 1.79 12 1.62 1.79 10
CFOS2 13.71 12 1.59 1.78 6 1.59 1.78 4
CFOD2 20.06 21 4.19 4.09 12 1.09 1.41 10
CFNS2 13.67 12 6.42 7.25 6 6.42 7.25 4
CFND2 11.73 21 0.73 0.99 12 0.60 0.88 10
CMOS1 115.58* 12 4.68 5.78 6 4.08 5.34 4
CMOD1 209.79* 21 557.00* 19.10 12 4.19 5.28 10
CMNS1 63.34* 12 190.00* 14.90 6 66.00* 9.71 4
CMND1 72.48* 21 11.50 11.10 12 8.13 8.10 10
CMOS2 113.63* 12 6.10 6.91 6 4.44 5.19 4
CMOD2 496.11* 21 78.90* 12.80 12 6.51 7.60 10
CMNS2 67.62* 12 75.90* 12.50 6 60.50* 12.00 4
CMND2 58.45* 21 0.43 0.66 12 0.44 0.67 10

χ 2 χ 2 χ 2L2 L2

Note:   χ2
.05 (4) = 14.86, χ2

.05 (6) = 18.54, χ2
.05 (10) = 25.18, χ2

.05 (12) = 28.30, χ2
.05 (21) = 41.40.

Test statistics with *'s represent  χ2's significant at the α = .05 level.



APPENDIX D
One, Two, Three and Four Component Model Solutions for All Basic-Level Groups

Group Curriculum Sex Time Type Status Comp's VAF df

PFOS1 Penn State Female 1 Old Same 1 0.811 0.309 2.5E+04 104.0 14
(0.016)

2 0.654 0.947 0.464 0.536 0.908 76.0 12.5 12
(0.020) (0.009) (0.056) (0.056)

3 0.338 0.698 0.953 0.038 0.467 0.495 0.999 5.1 5.6 10
(0.070) (0.019) (0.009) (0.021) (0.056) (0.056)

4 0.333 0.693 0.944 1.000 0.036 0.456 0.448 0.059 1.003 5.0 5.5 8
(0.071) (0.020) (0.010) (0.001) (0.021) (0.056) (0.056) (0.026)

PFOD1 Different 1 0.761 0.316 2.3E+07 115.5 14
(0.016)

2 0.576 0.887 0.404 0.596 0.885 1.0E+04 25.9 12
(0.021) (0.011) (0.051) (0.051)

3 0.000 0.606 0.895 0.011 0.428 0.561 0.962 8.0 8.4 10
(0.000) (0.020) (0.011) (0.011) (0.051) (0.051)

4 0.000 0.522 0.699 0.908 0.011 0.174 0.335 0.481 0.992 5.8 7.3 8
(0.000) (0.032) (0.021) (0.011) (0.011) (0.039) (0.049) (0.052)

PFNS1 New Same 1 0.675 0.504 82.3 42.7 14
(0.018)

2 0.600 0.878 0.732 0.268 0.992 3.1 3.2 12
(0.015) (0.017) (0.046) (0.046)

3 0.597 0.601 0.878 0.180 0.552 0.268 0.992 3.1 3.2 10
(0.031) (0.018) (0.017) (0.040) (0.052) (0.046)

4 0.599 0.604 0.878 0.878 0.602 0.130 0.217 0.051 0.992 3.1 3.2 8
(0.017) (0.036) (0.019) (0.039) (0.051) (0.035) (0.043) (0.023)

PFND1 Different 1 0.677 0.542 43.9 27.6 8
(0.023)

2 0.491 0.802 0.401 0.599 1.001 1.5 1.6 6
(0.027) (0.018) (0.051) (0.051)

3 0.491 0.492 0.802 0.149 0.252 0.599 1.001 1.5 1.6 4
(0.045) (0.034) (0.018) (0.037) (0.045) (0.051)

4 0.491 0.802 0.802 0.802 0.401 0.338 0.226 0.036 1.001 1.5 1.6 2
(0.027) (0.024) (0.029) (0.073) (0.051) (0.049) (0.043) (0.019)

$θ2
$θ3

$π1 $π2 $π3 χ 2 L2$θ1
$θ4 $π4
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Group Curriculum Sex Time Type Status Comp's VAF df

PFOS2 2 Old Same 1 0.845 0.456 197.7 40.3 8
(0.020)

2 0.630 0.933 0.290 0.710 0.983 6.8 9.0 6
(0.035) (0.012) (0.054) (0.054)

3 0.536 0.678 0.936 0.072 0.242 0.687 0.993 6.7 8.9 4
(0.074) (0.038) (0.012) (0.031) (0.051) (0.055)

4 0.630 0.933 0.933 0.933 0.290 0.140 0.244 0.325 0.983 6.8 9.0 2
(0.035) (0.026) (0.020) (0.017) (0.054) (0.041) (0.051) (0.056)

PFOD2 Different 1 0.801 0.242 1.7E+04 151.3 14
(0.017)

2 0.568 0.942 0.376 0.624 0.936 21.1 16.8 12
(0.025) (0.009) (0.058) (0.058)

3 0.472 0.682 0.947 0.180 0.229 0.591 0.992 12.3 14.4 10
(0.036) (0.030) (0.009) (0.046) (0.050) (0.059)

4 0.472 0.682 0.947 0.947 0.181 0.228 0.298 0.293 0.992 12.3 14.4 8
(0.036) (0.030) (0.013) (0.013) (0.046) (0.050) (0.055) (0.054)

PFNS2 New Same 1 0.749 0.359 255.3 75.0 14
(0.019)

2 0.593 0.901 0.495 0.505 0.990 8.4 8.7 12
(0.022) (0.013) (0.060) (0.060)

3 0.593 0.594 0.901 0.112 0.383 0.505 0.990 8.4 8.7 10
(0.045) (0.025) (0.013) (0.038) (0.058) (0.060)

4 0.587 0.880 0.880 1.000 0.473 0.207 0.261 0.059 1.007 7.3 7.7 8
(0.022) (0.022) (0.020) (0.000) (0.060) (0.048) (0.053) (0.028)

PFND2 Different 1 0.775 0.548 43.1 22.7 8
(0.024)

2 0.597 0.875 0.361 0.639 0.997 4.7 4.9 6
(0.033) (0.016) (0.057) (0.057)

3 0.596 0.597 0.875 0.092 0.269 0.639 0.997 4.7 4.9 4
(0.064) (0.038) (0.016) (0.035) (0.053) (0.057)

4 0.597 0.875 0.875 0.875 0.361 0.270 0.254 0.115 0.997 4.7 4.9 2
(0.033) (0.025) (0.026) (0.039) (0.057) (0.053) (0.052) (0.038)

$θ2
$θ3 $π1 $π2 $π3 χ 2 L2$θ1

$θ4 $π4

6
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Group Curriculum Sex Time Type Status Comp's VAF df

PMOS1 Male 1 Old Same 1 0.917 0.579 82.1 55.5 8
(0.008)

2 0.807 0.981 0.365 0.635 1.004 0.7 0.9 6
(0.014) (0.004) (0.030) (0.030)

3 0.807 0.807 0.981 0.045 0.320 0.635 1.004 0.7 0.9 4
(0.038) (0.014) (0.004) (0.013) (0.029) (0.030)

4 0.807 0.807 0.975 0.982 0.129 0.236 0.131 0.505 1.004 0.7 0.9 2
(0.023) (0.017) (0.009) (0.004) (0.021) (0.026) (0.021) (0.031)

PMOD1 Different 1 0.855 0.289 1.5E+10 317.4 14
(0.008)

2 0.657 0.942 0.305 0.695 0.853 1.2E+05 53.8 12
(0.014) (0.004) (0.029) (0.029)

3 0.242 0.723 0.954 0.021 0.362 0.617 0.957 22.8 17.8 10
(0.047) (0.012) (0.004) (0.009) (0.030) (0.030)

4 0.076 0.577 0.828 0.975 8.035Ey3 0.128 0.418 0.447 0.989 7.7 8.6 8
(0.048) (0.022) (0.009) (0.004) (0.006) (0.021) (0.031) (0.031)

PMNS1 New Same 1 0.779 0.382 640.1 218.4 14
(0.009)

2 0.655 0.927 0.545 0.455 0.952 17.0 16.5 12
(0.010) (0.006) (0.031) (0.031)

3 0.517 0.711 0.938 0.114 0.489 0.398 1.008 9.0 11.3 10
(0.024) (0.010) (0.006) (0.020) (0.031) (0.030)

4 0.517 0.711 0.938 0.938 0.114 0.488 0.232 0.165 1.008 9.0 11.3 8
(0.024) (0.010) (0.008) (0.010) (0.020) (0.031) (0.026) (0.023)

PMND1 Different 1 0.788 0.437 4.9E+03 133.2 8
(0.012)

2 0.542 0.885 0.285 0.715 0.939 20.2 10.6 6
(0.019) (0.008) (0.028) (0.028)

3 0.336 0.704 0.924 0.071 0.430 0.499 0.995 2.0 2.0 4
(0.037) (0.014) (0.008) (0.016) (0.031) (0.031)

4 0.328 0.685 0.878 0.947 0.066 0.372 0.307 0.256 0.996 1.9 2.0 2
(0.038) (0.016) (0.012) (0.009) (0.015) (0.030) (0.029) (0.027)

$θ2
$θ3

$π1 $π2 $π3 χ 2 L2$θ1
$θ4 $π4
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Group Curriculum Sex Time Type Status Comp's VAF df

PMOS2 2 Old Same 1 0.889 0.343 1.3E+03 198.7 8
(0.010)

2 0.540 0.960 0.169 0.831 1.029 18.4 17.7 6
(0.029) (0.005) (0.026) (0.026)

3 0.540 0.540 0.960 0.058 0.111 0.831 1.029 18.4 17.7 4
(0.049) (0.035) (0.005) (0.017) (0.022) (0.026)

4 0.532 0.948 0.948 0.995 0.163 0.273 0.377 0.188 1.040 18.2 17.5 2
(0.029) (0.010) (0.009) (0.004) (0.026) (0.032) (0.034) (0.028)

PMOD2 Different 1 0.865 0.225 6.7E+04 387.5 14
(0.009)

2 0.492 0.937 0.163 0.837 0.952 28.3 27.3 12
(0.023) (0.005) (0.026) (0.026)

3 0.457 0.869 0.976 0.139 0.365 0.496 1.012 9.5 10.2 10
(0.024) (0.010) (0.004) (0.024) (0.034) (0.035)

4 0.457 0.869 0.870 0.976 0.139 0.170 0.196 0.495 1.012 9.5 10.2 8
(0.024) (0.015) (0.014) (0.004) (0.024) (0.027) (0.028) (0.035)

PMNS2 New Same 1 0.817 0.307 2.3E+03 255.7 14
(0.010)

2 0.560 0.907 0.260 0.741 0.970 20.5 23.7 12
(0.018) (0.006) (0.031) (0.031)

3 0.543 0.569 0.907 0.083 0.178 0.740 0.970 20.5 23.7 10
(0.032) (0.021) (0.006) (0.019) (0.027) (0.031)

4 0.530 0.860 0.860 0.964 0.217 0.247 0.262 0.273 1.018 13.9 17.1 8
(0.020) (0.013) (0.012) (0.007) (0.029) (0.030) (0.031) (0.032)

PMND2 Different 1 0.836 0.562 72.5 55.2 8
(0.012)

2 0.687 0.931 0.392 0.608 1.026 2.9 3.5 6
(0.017) (0.008) (0.035) (0.035)

3 0.687 0.687 0.931 0.080 0.312 0.608 1.026 2.9 3.5 4
(0.039) (0.020) (0.008) (0.019) (0.033) (0.035)

4 0.687 0.687 0.931 0.931 0.282 0.110 0.284 0.324 1.026 2.9 3.5 2
(0.021) (0.033) (0.011) (0.010) (0.032) (0.022) (0.032) (0.033)

$θ2
$θ3

$π1 $π2 $π3 χ 2 L2$θ1
$θ4 $π4
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Group Curriculum Sex Time Type Status Comp's VAF df

CFOS1 Cooper-Union Female 1 Old Same 1 0.849 0.733 7.8 5.4 8
(0.032)

2 0.596 0.872 0.083 0.917 0.999 3.6 3.8 6
(0.108) (0.022) (0.052) (0.052)

3 0.596 0.596 0.872 0.019 0.064 0.917 0.999 3.6 3.8 4
(0.227) (0.122) (0.022) (0.026) (0.046) (0.052)

4 0.582 0.859 0.859 1.000 0.068 0.461 0.406 0.065 1.026 3.4 3.7 2
(0.119) (0.032) (0.034) (0.001) (0.048) (0.094) (0.093) (0.046)

CFOD1 Different 1 0.817 0.320 7.5E+03 36.0 14
(0.027)

2 0.592 0.900 0.270 0.730 0.878 19.6 12.3 12
(0.046) (0.017) (0.084) (0.084)

3 0.318 0.689 0.912 0.046 0.306 0.648 0.986 8.4 9.6 10
(0.107) (0.041) (0.017) (0.039) (0.087) (0.090)

4 0.318 0.689 0.912 0.912 0.046 0.306 0.589 0.059 0.986 8.4 9.6 8
(0.107) (0.041) (0.018) (0.057) (0.039) (0.087) (0.093) (0.044)

CFNS1 New Same 1 0.693 0.703 15.6 11.2 14
(0.032)

2 0.650 0.868 0.804 0.196 1.049 6.8 7.4 12
(0.026) (0.037) (0.075) (0.075)

3 0.650 0.650 0.868 0.143 0.661 0.196 1.049 6.8 7.4 10
(0.062) (0.029) (0.037) (0.066) (0.089) (0.075)

4 0.647 0.647 0.834 1.000 0.560 0.212 0.207 0.021 1.060 6.5 7.1 8
(0.031) (0.051) (0.040) (0.000) (0.094) (0.077) (0.077) (0.027)

CFND1 Different 1 0.698 0.450 28.7 17.7 8
(0.041)

2 0.562 0.921 0.621 0.380 0.969 1.6 1.8 6
(0.040) (0.028) (0.092) (0.092)

3 0.561 0.563 0.921 0.204 0.417 0.380 0.969 1.6 1.8 4
(0.069) (0.048) (0.028) (0.076) (0.093) (0.092)

4 0.562 0.563 0.921 0.921 0.477 0.144 0.193 0.187 0.969 1.6 1.8 2
(0.045) (0.082) (0.039) (0.039) (0.094) (0.066) (0.075) (0.074)

$θ2
$θ3

$π1 $π2 $π3 χ 2 L2$θ1
$θ4 $π4
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Group Curriculum Sex Time Type Status Comp's VAF df

CFOS2 2 Old Same 1 0.860 0.757 3.9 2.9 8
(0.031)

2 0.755 0.905 0.300 0.701 0.997 1.6 1.8 6
(0.050) (0.022) (0.088) (0.088)

3 0.755 0.755 0.905 0.039 0.261 0.700 0.997 1.6 1.8 4
(0.140) (0.054) (0.022) (0.037) (0.085) (0.088)

4 0.755 0.905 0.905 0.905 0.300 0.229 0.279 0.192 0.997 1.6 1.8 2
(0.050) (0.039) (0.036) (0.043) (0.088) (0.081) (0.086) (0.076)

CFOD2 Different 1 0.832 0.315 264.3 29.6 14
(0.026)

2 0.602 0.913 0.260 0.740 0.902 4.2 4.1 12
(0.048) (0.016) (0.084) (0.084)

3 0.544 0.853 0.985 0.179 0.557 0.264 0.987 1.1 1.4 10
(0.058) (0.024) (0.012) (0.074) (0.096) (0.085)

4 0.544 0.853 0.853 0.985 0.180 0.278 0.279 0.263 0.987 1.1 1.4 8
(0.058) (0.033) (0.033) (0.012) (0.074) (0.086) (0.086) (0.085)

CFNS2 New Same 1 0.701 0.407 56.6 29.3 14
(0.032)

2 0.606 0.924 0.701 0.300 0.981 6.4 7.2 12
(0.029) (0.024) (0.088) (0.088)

3 0.606 0.606 0.924 0.177 0.524 0.300 0.981 6.4 7.2 10
(0.058) (0.034) (0.024) (0.073) (0.096) (0.088)

4 0.606 0.606 0.924 0.924 0.568 0.133 0.194 0.105 0.981 6.4 7.2 8
(0.032) (0.067) (0.030) (0.041) (0.095) (0.065) (0.076) (0.059)

CFND2 Different 1 0.696 0.396 36.8 21.4 8
(0.042)

2 0.495 0.887 0.489 0.511 0.970 0.7 1.0 6
(0.046) (0.028) (0.096) (0.096)

3 0.495 0.495 0.887 0.202 0.287 0.511 0.970 0.7 1.0 4
(0.071) (0.060) (0.028) (0.077) (0.087) (0.096)

4 0.485 0.862 0.862 1.000 0.463 0.255 0.222 0.059 0.983 0.6 0.9 2
(0.047) (0.044) (0.047) (0.006) (0.096) (0.084) (0.080) (0.046)

$θ2
$θ3

$π1 $π2 $π3 χ 2 L2$θ1
$θ4 $π4
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Group Curriculum Sex Time Type Status Comp's VAF df

CMOS1 Male 1 Old Same 1 0.893 0.471 616.2 31.2 8
(0.017)

2 0.594 0.935 0.122 0.878 0.963 4.7 5.8 6
(0.054) (0.010) (0.038) (0.038)

3 0.534 0.866 0.960 0.080 0.348 0.573 0.990 4.2 5.4 4
(0.068) (0.022) (0.010) (0.031) (0.055) (0.057)

4 0.550 0.901 0.905 0.985 0.092 0.296 0.336 0.277 0.989 4.1 5.3 2
(0.063) (0.021) (0.020) (0.009) (0.033) (0.053) (0.055) (0.052)

CMOD1 Different 1 0.856 0.318 5.9E+05 83.2 14
(0.015)

2 0.709 0.956 0.404 0.596 0.850 559.7 19.1 12
(0.021) (0.008) (0.057) (0.057)

3 0.274 0.762 0.965 0.027 0.444 0.530 1.015 4.2 5.3 10
(0.081) (0.019) (0.008) (0.019) (0.057) (0.058)

4 0.274 0.762 0.964 0.965 0.027 0.444 0.166 0.363 1.015 4.2 5.3 8
(0.081) (0.019) (0.014) (0.009) (0.019) (0.057) (0.043) (0.056)

CMNS1 New Same 1 0.795 0.306 1.7E+05 95.7 14
(0.017)

2 0.612 0.917 0.401 0.599 0.894 190.4 14.9 12
(0.023) (0.011) (0.057) (0.057)

3 0.139 0.646 0.926 0.014 0.430 0.556 0.959 7.4 7.9 10
(0.089) (0.022) (0.010) (0.013) (0.057) (0.057)

4 0.138 0.615 0.877 1.000 0.013 0.344 0.499 0.144 0.998 3.8 4.4 8
(0.089) (0.025) (0.014) (0.001) (0.013) (0.055) (0.058) (0.040)

CMND1 Different 1 0.825 0.407 1.0E+03 52.1 8
(0.021)

2 0.487 0.895 0.170 0.830 0.936 11.5 11.1 6
(0.047) (0.013) (0.043) (0.043)

3 0.392 0.834 0.999 0.100 0.684 0.216 0.978 8.1 8.1 4
(0.059) (0.017) (0.003) (0.035) (0.054) (0.048)

4 0.332 0.691 0.865 1.000 0.070 0.151 0.599 0.179 0.998 7.5 7.8 2
(0.068) (0.046) (0.017) (0.000) (0.030) (0.041) (0.057) (0.044)

$θ2
$θ3

$π1 $π2 $π3 χ 2 L2$θ1
$θ4 $π4
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Group Curriculum Sex Time Type Status Comp's VAF df

CMOS2 2 Old Same 1 0.914 0.596 121.0 17.8 8
(0.015)

2 0.702 0.941 0.114 0.887 0.942 6.1 6.9 6
(0.051) (0.009) (0.035) (0.035)

3 0.543 0.900 1.000 0.036 0.695 0.270 1.022 4.4 5.2 4
(0.098) (0.013) (0.001) (0.021) (0.052) (0.050)

4 0.544 0.900 0.900 1.000 0.036 0.329 0.366 0.269 1.022 4.4 5.2 2
(0.098) (0.020) (0.019) (0.001) (0.021) (0.053) (0.054) (0.050)

CMOD2 Different 1 0.899 0.378 6.5E+04 59.9 14
(0.012)

2 0.759 0.965 0.318 0.682 0.916 79.2 12.8 12
(0.022) (0.006) (0.052) (0.052)

3 0.378 0.797 0.970 0.015 0.356 0.629 1.022 6.5 7.6 10
(0.113) (0.019) (0.006) (0.014) (0.054) (0.054)

4 0.378 0.797 0.970 0.970 0.015 0.356 0.182 0.447 1.022 6.5 7.6 8
(0.113) (0.019) (0.012) (0.007) (0.014) (0.054) (0.043) (0.056)

CMNS2 New Same 1 0.866 0.596 55.6 22.5 8
(0.017)

2 0.726 0.933 0.323 0.677 0.981 6.5 7.3 6
(0.027) (0.011) (0.048) (0.048)

3 0.527 0.784 0.944 0.032 0.401 0.567 1.002 6.2 7.0 4
(0.096) (0.022) (0.011) (0.018) (0.051) (0.051)

4 0.527 0.784 0.944 0.944 0.033 0.402 0.234 0.332 1.002 6.2 7.0 2
(0.095) (0.022) (0.016) (0.014) (0.018) (0.051) (0.044) (0.049)

CMND2 Different 1 0.840 0.493 50.2 31.9 8
(0.019)

2 0.670 0.942 0.374 0.627 1.003 0.4 0.7 6
(0.029) (0.011) (0.054) (0.054)

3 0.669 0.670 0.942 0.083 0.290 0.627 1.003 0.4 0.7 4
(0.061) (0.033) (0.011) (0.031) (0.051) (0.054)

4 0.670 0.941 0.942 0.942 0.374 0.109 0.212 0.306 1.003 0.4 0.7 2
(0.029) (0.027) (0.019) (0.016) (0.054) (0.035) (0.046) (0.052)

$θ2
$θ3

$π1 $π2 $π3 χ 2 L2$θ1
$θ4 $π4
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APPENDIX E

Z-scores for Penn State and Cooper-Union Males' and Females' Theta Estimates
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PFOS1 PFOD1 PFNS1 PFND1 PFOS2 PFOD2 PFNS2 PFND2
PFOS1 4.40* 4.04* 6.10* 2.15* 4.29* 3.83* 3.05*
PFOD1 3.01* -0.94 2.45* -1.32 0.23 -0.60 -0.55
PFNS1 2.75* 6.35* 3.47* -0.78 1.09 0.25 0.09
PFND1 -0.01 -0.61 1.94 -3.10* -2.08* -2.94* -2.48*
PFOS2 2.96* 0.45 4.08* -2.85* 1.43 0.88 0.69
PFOD2 -3.79* -0.79 0.61 3.11* -2.67* -0.77 -0.70
PFNS2 -3.29* -1.05 0.13 -6.16* -6.97* -4.48* -0.09
PFND2 -3.02* -0.56 1.85 2.86* 2.57* 3.52* 1.21

PMOS1 PMOD1 PMNS1 PMND1 PMOS2 PMOD2 PMNS2 PMND2
PMOS1 7.76* 8.90* 11.20* 8.44* 11.90* 11.00* 5.43*
PMOD1 6.66* 0.09 4.83* 3.68* 6.22* 4.30* -1.35
PMNS1 7.45* 11.10* 5.16* 3.79* 6.56* 4.63* -1.56
PMND1 3.33* 7.21* 10.30* 0.06 1.68 -0.68 -5.56*
PMOS2 5.84* 1.97 6.29* -2.59* 1.32 -0.59 -4.39*
PMOD2 0.78 4.65* 1.24 4.18* -4.07* -2.36* -6.82*
PMNS2 -1.25 2.35* -0.41 -7.97* -5.61* -2.13* -5.10*
PMND2 -4.18* 3.24* 6.64* 3.11* 3.87* 0.64 -2.50*

CFOS1 CFOD1 CFNS1 CFND1 CFOS2 CFOD2 CFNS2 CFND2
CFOS1 0.03 -0.49 0.29 -1.34 -0.06 -0.10 0.86
CFOD1 -0.99 -1.09 0.49 -2.37* -0.15 -0.26 1.49
CFNS1 0.10 -1.39 1.85 -1.84 0.88 1.13 2.94*
CFND1 -1.05 -1.49 -1.57 -3.00* -0.64 -0.90 1.11
CFOS2 -0.42 0.77 -0.67 -0.20 2.20* 2.55* 3.81*
CFOD2 -0.56 -0.81 0.38 -1.15 -0.86 -0.07 1.62
CFNS2 -1.10 -1.25 -0.41 0.45 0.26 -0.06 2.05*
CFND2 0.86 -0.27 -0.55 0.50 -0.37 0.78 0.98

CMOS1 CMOD1 CMNS1 CMND1 CMOS2 CMOD2 CMNS2 CMND2
CMOS1 -1.98 -0.31 1.50 -1.47 -2.82* -1.04 -1.24
CMOD1 -1.62 3.09* 4.33* 0.12 -1.63 1.86 1.10
CMNS1 1.22 2.46* 2.41* -1.63 -4.62* -1.38 -1.57
CMND1 -0.43 -2.47* -0.86 -3.13* -5.27* -3.29* -3.34*
CMOS2 -0.47 2.92* 4.03* 1.22 -1.02 0.89 0.57
CMOD2 -0.87 0.78 1.02 1.35 -1.68 3.51* 2.47*
CMNS2 -3.83* -2.13* -1.63 -2.90* -4.84* -3.31* -0.44
CMND2 -2.79* -2.09* -0.43 -0.08 1.65 1.77 0.32

Note:  Comparisons above the diagonal are for the "Low" performing component.  Asterisks indicate 
significant differences at the α = .05 level.



APPENDIX F

Z-scores for Penn State and Cooper-Union Males' and Females' Theta Estimates                        
within Item-type by Item-status by Time Grouping
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OS1 OD1
PF PM CF CM PF PM CF CM

PF -2.68* 1.18 2.18* PF -3.26* -0.33 -4.47*
PM -4.28* -1.95 -3.82* PM -4.63* -1.34 -2.04*
CF 2.50* -4.87* -0.01 CF -0.61 2.40* -2.29*
CM -0.14 -4.24* -2.60* CM -5.07* -1.50 -2.98*

NS1 ND1
PF PM CF CM PF PM CF CM

PF -3.00* -1.66 -0.44 PF -1.52 -1.47 0.08
PM -2.72* 0.19 1.73 PM -4.30* -0.46 1.09
CF 0.25 1.57 1.10 CF -3.64* -1.25 1.23
CM -1.95 0.81 -1.27 CM -4.21* -0.60 0.87

OS2 OD2
PF PM CF CM PF PM CF CM

PF 1.97 -2.02* -1.17 PF 2.26* -0.63 -5.74*
PM -2.08* -3.70* -2.79* PM 0.434 -2.08* -8.46*
CF 1.10 2.37* 0.73 CF 1.54 1.42 -2.98*
CM -0.523 1.77 -1.47 CM -2.01* -3.43* -2.96*

NS2 ND2
PF PM CF CM PF PM CF CM

PF 1.19 -0.36 -2.06* PF -2.45* 1.81 -1.68
PM -0.41 -1.36 -3.50* PM -3.08* 3.91* 0.52
CF -0.83 -0.68 -1.35 CF -0.36 1.5 -3.22*
CM -2.92* -3.69* -0.90 CM -3.37* -0.81 -1.80

Note:  Comparisons above the diagonal are for the "Low" performing component, while those below the 
diagonal are for the "High" performing component.  Asterisks indicate significant differences at the alpha = 
0.05 level.



APPENDIX G

Two Component Restricted Model Estimates and Fit Statistics

Group Curriculum Sex Time Type Status Comp's VAF df

PFOS1 Penn State Female 1 Old Same 2 0.726 0.933 0.323 0.677 0.981 6.5 7.3 6
(0.027) (0.011) (0.048) (0.048)

0.628 0.934 0.268 0.732 1.000 9.5 11.6 8
(0.032) (0.010) (0.046) (0.046)

4.3 2 *

PFOD1 Different 2 0.576 0.887 0.404 0.596 0.885 1.0E+04 25.9 12
(0.021) (0.011) (0.051) (0.051)

0.628 0.934 0.529 0.471 0.870 56900.0 34.7 14
(0.018) (0.010) (0.052) (0.052)

8.8 2

PFNS1 New Same 2 0.600 0.878 0.732 0.268 0.992 3.1 3.2 12
(0.015) (0.017) (0.046) (0.046)

0.628 0.934 0.803 0.197 0.965 7.9 7.6 14
(0.014) (0.015) (0.041) (0.041)

4.4 2 *

PFND1 Different 2 0.491 0.802 0.401 0.599 1.000 1.5 1.6 6
(0.027) (0.018) (0.051) (0.051)

0.628 0.934 0.754 0.246 0.860 19.0 15.2 8
(0.019) (0.017) (0.045) (0.045)

13.6 2

$θ2
$θ3

$π1 $π3 χ 2 L2$θ1
$π2
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Group Curriculum Sex Time Type Status Comp's VAF df

PFOS2 2 Old Same 2 0.630 0.933 0.290 0.710 0.983 6.8 9.0 6
(0.035) (0.012) (0.054) (0.054)

0.628 0.934 0.312 0.688 1.000 6.4 9.1 8
(0.034) (0.012) (0.055) (0.055)

0.1 2 *

PFOD2 Different 2 0.568 0.942 0.376 0.624 0.936 21.1 16.8 12
(0.025) (0.009) (0.058) (0.058)

0.628 0.934 0.393 0.607 0.701 65.2 22.8 14
(0.024) (0.010) (0.058) (0.058)

6.0 2 *

PFNS2 New Same 2 0.593 0.901 0.495 0.505 0.990 8.4 8.7 12
(0.022) (0.013) (0.060) (0.060)

0.628 0.934 0.567 0.433 0.959 16.0 12.9 14
(0.020) (0.012) (0.059) (0.059)

4.2 2 *

PFND2 Different 2 0.594 0.875 0.361 0.639 0.997 4.7 4.9 6
(0.033) (0.016) (0.057) (0.057)

0.628 0.934 0.519 0.481 1.000 9.2 9.6 8
(0.027) (0.014) (0.060) (0.060)

4.7 2 *

$θ2
$θ3

$π1 $π3 χ 2 L2$θ1
$π1

277



Group Curriculum Sex Time Type Status Comp's VAF df

PMOS1 Male 1 Old Same 2 0.807 0.981 0.365 0.635 1.000 0.7 0.9 6
(0.014) (0.004) (0.030) (0.300)

0.628 0.934 0.137 0.863 1.000 22.3 26.9 8
(0.027) (0.006) (0.021) (0.021)

26.0 2

PMOD1 Different 2 0.657 0.942 0.305 0.695 0.853 1.2E+05 53.80 12
(0.014) (0.004) (0.029) (0.029)

0.628 0.934 0.279 0.721 0.913 3.9E+04 55.8 14
(0.015) (0.005) (0.028) (0.028)

2.0 2 *

PMNS1 New Same 2 0.655 0.927 0.545 0.455 0.952 17.0 16.5 12
(0.010) (0.006) (0.031) (0.031)

0.628 0.934 0.531 0.469 1.000 20.4 23.1 14
(0.011) (0.006) (0.031) (0.031)

6.6 2

PMND1 Different 2 0.542 0.885 0.28 0.72 0.939 20.2 10.6 6
(0.019) (0.008) (0.028) (0.028)

0.628 0.934 0.464 0.536 0.915 77.6 21.1 8
(0.015) (0.007) (0.031) (0.031)

10.5 2

$θ2
$θ3

$π1 $π3 χ 2 L2$θ1
$π2

278



Group Curriculum Sex Time Type Status Comp's VAF df

PMOS2 2 Old Same 2 0.540 0.960 0.169 0.831 1.000 18.4 17.7 6

(0.029) (0.005) (0.026) (0.026)

0.628 0.934 0.185 0.815 0.765 51.9 44.6 8
(0.026) (0.007) (0.027) (0.027)

26.9 2

PMOD2 Different 2 0.492 0.937 0.163 0.837 0.952 28.3 27.3 12
(0.023) (0.005) (0.026) (0.026)

0.628 0.934 0.209 0.792 0.633 86.6 55.3 14
(0.019) (0.005) (0.029) (0.029)

28.0 2

PMNS2 New Same 2 0.560 0.907 0.260 0.741 0.970 20.5 23.7 12
(0.018) (0.006) (0.031) (0.031)

0.628 0.934 0.355 0.645 0.908 36.2 36.3 14
(0.015) (0.006) (0.034) (0.034)

12.6 2

PMND2 Different 2 0.687 0.931 0.392 0.608 1.000 2.9 3.4 6
(0.017) (0.008) (0.035) (0.035)

0.628 0.934 0.358 0.642 1.000 6.8 8.8 8
(0.019) (0.007) (0.034) (0.034)

5.4 2 *

$θ2
$θ3

$π1 $π3 χ 2 L2$θ1
$π2
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Group Curriculum Sex Time Type Status Comp's VAF df

CFOS1 Cooper-Union Female 1 Old Same 2 0.596 0.872 0.083 0.917 0.999 3.6 3.8 6
(0.108) (0.022) (0.052) (0.052)

0.628 0.934 0.320 0.680 1.000 11.1 9.9 8

(0.054) (0.019) (0.088) (0.088)

6.1 2

CFOD1 Different 2 0.592 0.900 0.270 0.730 0.878 19.6 12.3 12
(0.046) (0.017) (0.084) (0.084)

0.628 0.934 0.357 0.643 0.951 32.2 14.5 14
(0.039) (0.015) (0.091) (0.091)

2.2 2 *

CFNS1 New Same 2 0.650 0.868 0.804 0.196 1.000 6.8 7.4 12
(0.026) (0.037) (0.075) (0.075)

0.628 0.934 0.830 0.170 1.000 9.4 10.1 14
(0.026) (0.029) (0.071) (0.071)

2.7 2 *

CFND1 Different 2 0.562 0.927 0.621 0.380 0.969 1.6 1.8 6
(0.040) (0.028) (0.092) (0.092)

0.628 0.934 0.673 0.327 0.774 4.5 3.5 8
(0.037) (0.027) (0.089) (0.089)

1.7 2 *

$θ2
$θ3

$π1 $π3 χ 2 L2$θ1
$π2
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Group Curriculum Sex Time Type Status Comp's VAF df

CFOS2 2 Old Same 2 0.755 0.905 0.300 0.701 0.997 1.6 1.8 6
(0.050) (0.022) (0.088) (0.088)

0.628 0.934 0.279 0.721 1.000 4.1 5.5 8

(0.059) (0.019) (0.086) (0.086)

3.7 2 *

CFOD2 Different 2 0.602 0.913 0.260 0.740 0.902 4.2 4.1 12
(0.047) (0.016) (0.084) (0.084)

0.628 0.934 0.337 0.663 0.975 5.3 4.8 14
(0.041) (0.015) (0.091) (0.091)

0.7 2 *

CFNS2 New Same 2 0.606 0.924 0.700 0.300 0.981 6.4 7.2 12
(0.029) (0.024) (0.088) (0.088)

0.628 0.934 0.717 0.283 0.910 6.9 7.7 14
(0.028) (0.023) (0.087) (0.087)

0.5 2 *

CFND2 Different 2 0.495 0.887 0.489 0.511 0.970 0.7 1.0 6
(0.046) (0.028) (0.096) (0.096)

0.628 0.934 0.647 0.353 0.682 7.9 5.5 8
(0.039) (0.027) (0.092) (0.092)

4.5 2 *

$θ2
$θ3

$π1 $π3 χ 2 L2$θ1
$π2
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Group Curriculum Sex Time Type Status Comp's VAF df

CMOS1 Male 1 Old Same 2 0.594 0.935 0.122 0.878 0.963 4.7 5.8 6
(0.054) (0.010) (0.038) (0.038)

0.628 0.934 0.172 0.828 1.000 5.3 6.6 8

(0.045) (0.011) (0.044) (0.044)

0.8 2 *

CMOD1 Different 2 0.709 0.956 0.404 0.596 0.850 559.7 19.1 12
(0.021) (0.008) (0.057) (0.057)

0.628 0.934 0.301 0.699 1.000 70.5 24.3 14
(0.026) (0.009) (0.053) (0.053)

5.2 2 *

CMNS1 New Same 2 0.612 0.917 0.401 0.599 0.894 190.4 14.9 12
(0.023) (0.011) (0.057) (0.057)

0.628 0.934 0.449 0.551 0.910 281.2 15.9 14
(0.022) (0.010) (0.057) (0.057)

1.0 2 *

CMND1 Different 2 0.487 0.895 0.170 0.830 0.936 11.5 11.1 6
(0.047) (0.013) (0.043) (0.043)

0.628 0.934 0.352 0.648 0.884 26.8 15.9 8
(0.031) (0.012) (0.055) (0.055)

4.8 2 *

$θ2
$θ3

$π1 $π3 χ 2 L2$θ1
$π2
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Group Curriculum Sex Time Type Status Comp's VAF df

CMOS2 2 Old Same 2 0.702 0.941 0.114 0.887 0.942 6.1 6.9 6
(0.051) (0.009) (0.035) (0.035)

0.628 0.934 0.124 0.876 1.000 5.5 8.6 8
(0.051) (0.010) (0.037) (0.037)

1.7 2 *

CMOD2 Different 2 0.759 0.965 0.318 0.682 0.916 79.2 12.8 12
(0.022) (0.006) (0.052) (0.052)

0.628 0.934 0.175 0.826 1.000 23.4 24.2 14
(0.033) (0.008) (0.042) (0.042)

11.4 2

CMNS2 New Same 2 0.654 0.947 0.464 0.536 0.908 76.0 12.5 12
(0.020) (0.009) (0.056) (0.056)

0.628 0.934 0.430 0.570 0.963 43.3 13.9 14
(0.021) (0.010) (0.055) (0.055)

1.4 2 *

CMND2 Different 2 0.670 0.942 0.374 0.626 1.000 0.4 0.7 6
(0.029) (0.011) (0.054) (0.054)

0.628 0.934 0.340 0.660 1.000 0.9 1.4 8
(0.031) (0.011) (0.053) (0.053)

0.7 2 *

$θ2
$θ3

$π1 $π3 χ 2 L2$θ1
$π2
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APPENDIX H

Z-scores for Penn State and Cooper-Union Males' and Females' Pi Estimates
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PFOS1 PFOD1 PFNS1 PFND1 PFOS2 PFOD2 PFNS2 PFND2
PFOS1 -1.16 -6.13* -1.11 0.45 -0.71 -2.24* -0.51
PFOD1 -1.16 -4.78* 0.05 1.54 0.36 -1.16 0.56
PFNS1 -6.13* -4.78* 4.83* 6.24* 4.81* 3.14* 5.04*
PFND1 -1.11 0.05 4.83* 1.49 0.32 -1.20 0.51
PFOS2 0.45 1.54 6.24* 1.49 -1.09 -2.54* -0.90
PFOD2 -0.71 0.36 4.81* 0.32 -1.09 -1.43 0.18
PFNS2 -2.24* -1.16 3.14* -1.20 -2.54* -1.43 1.61
PFND2 -0.51 0.56 5.04* 0.51 -0.90 0.18 1.61

PMOS1 PMOD1 PMNS1 PMND1 PMOS2 PMOD2 PMNS2 PMND2
PMOS1 1.45 -4.18* 1.94 4.89* 5.08* 2.44* -0.59
PMOD1 1.45 -5.69* 0.50 3.48* 3.67* 1.07 -1.94
PMNS1 -4.18* -5.69* 6.22* 9.22* 9.43* 6.51* 3.30*
PMND1 1.94 0.50 6.22* 3.00* 3.19* 0.60 -2.40*
PMOS2 4.89* 3.48* 9.22* 3.00* 0.17 -2.22* -5.12*
PMOD2 5.08* 3.67* 9.43* 3.19* 0.17 -2.39* -5.30*
PMNS2 2.44* 1.07 6.51* 0.60 -2.22* -2.39* -2.85*
PMND2 -0.59 -1.94 3.30* -2.40* -5.12* -5.30* -2.85*

CFOS1 CFOD1 CFNS1 CFND1 CFOS2 CFOD2 CFNS2 CFND2
CFOS1 -1.89 -7.89* -5.10* -2.12* -1.78 -6.03* -3.71*
CFOD1 -1.89 -4.74* -2.82* -0.25 0.08 -3.54* -1.72
CFNS1 -7.89* -4.74* 1.55 4.35* 4.82* 0.89 2.58*
CFND1 -5.10* -2.82* 1.55 2.52* 2.90* -0.63 0.99
CFOS2 -2.12* -0.25 4.35* 2.52* 0.33 -3.22* -1.45
CFOD2 -1.78 0.08 4.82* 2.90* 0.33 -3.61* -1.79
CFNS2 -6.03* -3.54* -0.63 -3.22* -3.61* 1.62
CFND2 -3.71* -1.72 2.58* 0.99 -1.45 -1.79 1.62

CMOS1 CMOD1 CMNS1 CMND1 CMOS2 CMOD2 CMNS2 CMND2
CMOS1 -4.14* -4.10* -0.84 0.17 -3.04* -5.08* -3.81*
CMOD1 -4.14* 0.03 3.28* 4.35* 1.12 -0.76 0.39
CMNS1 -4.10* 0.03 3.24* 4.31* 1.08 -0.79 0.36
CMND1 -0.84 3.28* 3.24* 1.01 -2.18* -4.16* -2.93*
CMOS2 0.17 4.35* 4.31* 1.01 -3.25* -5.31* -4.02*
CMOD2 -3.04* 1.12 1.08 -2.18* -3.25* -1.92 -0.74
CMNS2 -5.08* -0.76 -0.79 -4.16* -5.31* -1.92 1.17
CMND2 -3.81* 0.39 0.36 -2.93* -4.02* -0.74 1.17

Note:  Comparisons above the diagonal are for the "Low" performing component.  Asterisks indicate 
significant differences at the α = 0.05 level



APPENDIX I

One, Two, Three, and Four Component Model Parameter Estimates and Fit Statistics for the Summary-level Groups

Group Comp's Iter's VAF df AIC

PMO1 1 3 0.879 0.258 5.5+E5 389 23 1552 1554
(0.006)

2 36 0.719 0.948 0.304 0.696 0.877 79.4 43.8 21 1176 1182
(0.010) (0.003) (0.029) (0.029)

3 136 0.618 0.850 0.971 0.123 0.398 0.479 0.990 10.2 10.8 19 1143 1153
(0.018) (0.007) (0.009) (0.020) (0.030) (0.031)

4 521 0.598 0.822 0.947 1.000 0.106 0.301 0.469 0.123 1.000 8.0 8.8 17 1141 1155
(0.019) (0.009) (0.004) (0.001) (0.019) (0.029) (0.031) (0.020)

PFO1 1 3 0.801 0.321 2271 112.2 23 576 578
(0.012)

2 41 0.697 0.924 0.543 0.457 0.911 29.8 12.6 21 476 482
(0.013) (0.008) (0.052) (0.052)

3 368 0.617 0.773 0.941 0.207 0.436 0.358 0.983 8.7 8.3 19 472 482
(0.023) (0.013) (0.008) (0.042) (0.051) (0.050)

4 741 0.489 0.671 0.808 0.945 0.022 0.328 0.324 0.326 0.991 7.7 8.1 17 472 486
(0.071) (0.017) (0.015) (0.008) (0.015) (0.049) (0.049) (0.049)

PMN1 1 3 0.782 0.268 5631 433.9 23 1778 1780
(0.007)

2 43 0.645 0.907 0.476 0.524 0.885 68.5 59.6 21 1404 1410
(0.009) (0.005) (0.031) (0.031)

3 191 0.577 0.805 0.955 0.275 0.458 0.267 0.985 23.2 23.1 19 1367 1377
(0.012) (0.007) (0.005) (0.028) (0.031) (0.028)

4 178 0.556 0.756 0.906 1.000 0.217 0.366 0.341 0.076 0.998 16.1 16.7 17 1361 1375
(0.014) (0.009) (0.006) (0.001) (0.026) (0.030) (0.030) (0.016)

PFN1 1 3 0.676 0.383 692.6 87.0 23 576 578
(0.014)

2 54 0.592 0.839 0.661 0.339 0.934 18.8 16.9 21 506 512
(0.013) (0.013) (0.049) (0.049)

3 190 0.564 0.757 0.930 0.513 0.386 0.101 1.000 10.4 11.1 19 500 510
(0.015) (0.015) (0.017) (0.052) (0.050) (0.031)

4 113 0.564 0.753 0.915 1.000 0.509 0.380 0.102 0.009 1.000 10.3 10.9 17 500 514
(0.015) (0.015) (0.019) (0.001) (0.052) (0.050) (0.031) (0.010)

PMO2 1 3 0.874 0.148 1.4+E7 710.2 23 1531 1533
(0.007)

2 10 0.473 0.938 0.139 0.861 0.949 74.9 60.4 21 882 888
(0.019) (0.004) (0.024) (0.024)

3 149 0.458 0.884 0.975 0.131 0.372 0.497 1.000 23.6 24.9 19 846 856
(0.020) (0.008) (0.003) (0.024) (0.034) (0.035)

4 1631 0.451 0.816 0.913 0.982 0.126 0.773 0.410 0.386 1.000 21.2 24.3 17 845 859
(0.020) (0.020) (0.006) (0.003) (0.023) (0.019) (0.035) (0.034)

$θ2
$θ3

$θ4 $π1 $π2 $π3 $π4 χ 2 L2 − 2LL$θ1
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285



Group Comp's Iter's VAF df AIC

PFO2 1 3 0.820 0.189 4.2+E4 214.5 23 548 550
(0.013)

2 22 0.621 0.936 0.367 0.633 0.870 44.0 36.8 21 370 376
(0.020) (0.008) (0.058) (0.058)

3 74 0.505 0.797 0.961 0.181 0.353 0.465 0.996 16.8 19.9 19 353 363
(0.029) (0.017) (0.007) (0.046) (0.057) (0.060)

4 76 0.500 0.765 0.926 1.000 0.174 0.265 0.411 0.150 1.000 13.7 16.4 17 350 364
(0.029) (0.020) (0.010) (0.001) (0.045) (0.053) (0.059) (0.043)

PMN2 1 3 0.824 0.238 1.1+E4 398.1 23 1370 1372
(0.008)

2 30 0.605 0.906 0.274 0.726 0.914 59.2 53.1 21 1025 1031
(0.013) (0.005) (0.032) (0.032)

3 116 0.557 0.835 0.958 0.198 0.445 0.357 1.000 21.0 20.7 19 992 1002
(0.016) (0.008) (0.005) (0.028) (0.035) (0.034)

4 721 0.557 0.835 0.956 0.960 0.198 0.445 0.166 0.190 1.000 21.0 20.7 17 992 1006
(0.016) (0.008) (0.007) (0.007) (0.028) (0.035) (0.026) (0.028)

PFN2 1 3 0.758 0.285 414.9 114.1 23 476 478
(0.015)

2 32 0.634 0.904 0.540 0.460 0.932 11.80 12.30 21 374 380
(0.016) (0.011) (0.060) (0.060)

3 148 0.587 0.769 0.926 0.354 0.303 0.343 1.000 8.0 9.0 19 371 381
(0.020) (0.019) (0.011) (0.057) (0.055) (0.057)

4 132 0.587 0.769 0.926 0.927 0.354 0.303 0.283 0.060 1.000 8.0 9.0 17 371 385
(0.020) (0.019) (0.012) (0.026) (0.057) (0.055) (0.054) (0.028)

CMO1 1 3 0.870 0.281 8.3+E6 108.4 23 433 435
(0.011)

2 65 0.738 0.945 0.363 0.637 0.847 1157 25.5 21 350 356
(0.017) (0.007) (0.056) (0.056)

3 49 0.338 0.775 0.956 0.013 0.426 0.560 0.955 15.5 15.0 19 340 350
(0.096) (0.015) (0.006) (0.013) (0.057) (0.057)

4 147 0.337 0.727 0.879 0.971 0.013 0.246 0.355 0.385 1.000 12.9 12.5 17 337 351
(0.096) (0.021) (0.013) (0.006) (0.013) (0.050) (0.055) (0.056)

CFO1 1 3 0.829 0.288 1269 40.6 23 169 171
(0.021)

2 35 0.678 0.913 0.357 0.643 0.879 12.0 10.0 21 139 145
(0.030) (0.014) (0.091) (0.091)

3 67 0.523 0.770 0.930 0.090 0.401 0.509 0.990 6.1 7.3 19 136 146
(0.064) (0.026) (0.014) (0.054) (0.093) (0.094)

4 154 0.523 0.770 0.930 0.930 0.090 0.401 0.361 0.148 0.990 6.1 7.3 17 136 150
(0.064) (0.026) (0.016) (0.026) (0.054) (0.093) (0.091) (0.067)

$θ2
$θ3

$θ4
$π1 $π2

$π3 $π4 χ 2 L2 − 2LL$θ1

286

286



Group Comp's Iter's VAF df AIC

CMN1 1 3 0.806 0.269 1277 127.6 23 502 504
(0.013)

2 34 0.664 0.921 0.448 0.552 0.914 16.1 14.7 21 390 396
(0.017) (0.009) (0.057) (0.057)

3 213 0.634 0.870 0.982 0.355 0.466 0.179 0.980 6.0 7.5 19 382 392
(0.019) (0.012) (0.007) (0.055) (0.058) (0.044)

4 1023 0.627 0.833 0.926 0.999 0.329 0.294 0.292 0.085 0.987 5.6 7.3 17 382 396
(0.020) (0.016) (0.011) (0.002) (0.054) (0.053) (0.052) (0.032)

CFN1 1 3 0.695 0.443 245.7 26.1 23 160 162
(0.025)

2 59 0.623 0.839 0.667 0.333 0.939 14.1 12.8 21 147 153
(0.023) (0.025) (0.089) (0.089)

3 55 0.608 0.792 1.000 0.566 0.400 0.034 0.980 8.9 9.6 19 144 154
(0.025) (0.025) (0.000) (0.094) (0.093) (0.034)

4 78 0.608 0.792 0.792 1.000 0.566 0.286 0.114 0.034 0.980 8.9 9.6 17 144 158
(0.025) (0.029) (0.046) (0.000) (0.094) (0.085) (0.060) (0.034)

CMO2 1 3 0.905 0.315 2.8+E5 90.8 23 398 400
(0.009)

2 28 0.781 0.964 0.325 0.675 0.932 92.4 15.0 21 322 328
(0.017) (0.005) (0.052) (0.052)

3 31 0.482 0.804 0.966 0.014 0.337 0.649 1.000 10.1 10.5 19 318 328
(0.097) (0.016) (0.005) (0.013) (0.053) (0.053)

4 153 0.482 0.804 0.966 0.966 0.014 0.337 0.275 0.374 1.000 10.1 10.5 17 318 332
(0.097) (0.016) (0.008) (0.007) (0.013) (0.053) (0.050) (0.054)

CFO2 1 3 0.843 0.285 421 42.1 23 161 163
(0.020)

2 21 0.627 0.906 0.228 0.773 0.963 7.2 8.2 21 127 133
(0.040) (0.013) (0.081) (0.081)

3 68 0.615 0.886 0.974 0.210 0.635 0.154 1.000 6.1 7.1 19 126 136
(0.042) (0.016) (0.016) (0.078) (0.093) (0.070)

4 106 0.615 0.886 0.886 0.974 0.210 0.240 0.395 0.155 1.000 6.1 7.1 17 126 140
(0.042) (0.026) (0.020) (0.016) (0.078) (0.082) (0.094) (0.070)

CMN2 1 3 0.822 0.225 7.8+E5 172.8 23 567 569
(0.012)

2 22 0.645 0.929 0.377 0.622 0.900 98.0 17.1 21 411 417
(0.018) (0.007) (0.054) (0.054)

3 192 0.514 0.721 0.939 0.105 0.332 0.563 0.967 13.0 11.1 19 405 415
(0.035) (0.018) (0.007) (0.034) (0.053) (0.055)

4 381 0.360 0.649 0.884 0.969 0.019 0.326 0.366 0.289 0.983 8.9 8.6 17 403 417
(0.080) (0.019) (0.012) (0.007) (0.015) (0.052) (0.054) (0.051)

$θ2
$θ3

$θ4
$π1 $π2

$π3 $π4 χ 2 L2 − 2LL$θ1

287

287



Group Comp's Iter's VAF df AIC

CFN2 1 3 0.699 0.263 525.4 52.9 23 197 199
(0.025)

2 28 0.604 0.915 0.694 0.306 0.855 14.4 8.4 21 152 158
(0.023) (0.020) (0.089) (0.089)

3 59 0.471 0.669 0.926 0.204 0.523 0.274 0.986 4.6 5.0 19 149 159
(0.043) (0.026) (0.020) (0.077) (0.096) (0.086)

4 78 0.471 0.669 0.926 0.926 0.204 0.523 0.219 0.054 0.986 4.6 5.0 17 149 163
(0.043) (0.026) (0.022) (0.044) (0.076) (0.096) (0.080) (0.044)

MO1 1 3 0.876 0.264 4.4+E6 478.3 23 1955 1957
(0.005)

2 40 0.723 0.947 0.315 0.685 0.873 213.6 50.6 21 1528 1534
(0.009) (0.003) (0.025) (0.025)

3 149 0.620 0.848 0.970 0.128 0.399 0.474 0.983 13.0 10.5 19 1488 1498
(0.015) (0.006) (0.003) (0.018) (0.027) (0.027)

4 969 0.483 0.677 0.866 0.973 0.020 0.149 0.399 0.433 0.997 6.9 8.2 17 1485 1499
(0.040) (0.014) (0.006) (0.003) (0.008) (0.020) (0.027) (0.027)

FO1 1 3 0.807 0.314 2809 146.3 23 748 750
(0.010)

2 40 0.693 0.92 0.499 0.502 0.912 27.3 15.1 21 617 623
(0.012) (0.007) (0.045) (0.045)

3 218 0.590 0.763 0.936 0.148 0.45 0.402 0.989 8.1 8.6 19 610 620
(0.024) (0.012) (0.007) (0.032) (0.045) (0.045)

4 1751 0.576 0.746 0.889 0.947 0.119 0.424 0.176 0.281 0.993 8.0 8.5 17 610 624
(0.027) (0.012) (0.014) (0.008) (0.029) (0.045) (0.035) (0.041)

MN1 1 3 0.788 0.268 6739 552.8 23 2285 2287
(0.006)

2 40 0.65 0.911 0.472 0.529 0.893 72.8 62.8 21 1795 1801
(0.008) (0.004) (0.027) (0.027)

3 285 0.594 0.824 0.963 0.304 0.456 0.240 0.981 21.0 20.7 19 1753 1763
(0.010) (0.006) (0.004) (0.025) (0.027) (0.023)

4 225 0.568 0.757 0.907 1.000 0.224 0.34 0.357 0.079 0.997 13.0 13.3 17 1746 1760
(0.012) (0.008) (0.005) (0.007) (0.023) (0.026) (0.026) (0.015)

FN1 1 3 0.680 0.397 917 100.5 23 737 739
(0.012)

2 56 0.599 0.839 0.662 0.338 0.939 21.4 17.2 21 654 660
(0.011) (0.012) (0.043) (0.043)

3 367 0.586 0.804 0.986 0.594 0.375 0.031 0.98 9.8 10.6 19 647 657
(0.012) (0.012) (0.012) (0.045) (0.044) (0.016)

4 252 0.573 0.751 0.875 1.000 0.512 0.345 0.124 0.019 0.998 8.8 9.7 17 646 660
(0.013) (0.014) (0.017) (0.000) (0.045) (0.043) (0.030) (0.013)

$θ2
$θ3

$θ4
$π1 $π2

$π3 $π4 χ 2 L2 − 2LL$θ1
288

288



Group Comp's Iter's VAF df AIC

MO2 1 3 0.883 0.169 2.8+E7 779.6 23 1942 1944
(0.006)

2 20 0.519 0.936 0.127 0.873 0.893 133.7 99.3 21 1262 1268
(0.017) (0.003) (0.020) (0.020)

3 73 0.454 0.843 0.968 0.095 0.291 0.615 1.000 18.0 19.9 19 1183 1193
(0.020) (0.008) (0.003) (0.018) (0.027) (0.029)

4 1494 0.451 0.829 0.954 0.998 0.094 0.236 0.554 0.117 1.000 16.9 18.7 17 1181 1195
(0.020) (0.009) (0.003) (0.002) (0.017) (0.025) (0.030) (0.019)

FO2 1 3 0.827 0.208 4.8+E4 240 23 710 712
(0.011)

2 25 0.621 0.926 0.327 0.673 0.891 37.8 31.1 21 502 508
(0.018) (0.007) (0.048) (0.048)

3 202 0.547 0.837 0.967 0.204 0.424 0.373 0.982 13.1 14.9 19 485 495
(0.023) (0.012) (0.006) (0.041) (0.050) (0.049)

4 243 0.529 0.772 0.920 1.000 0.175 0.235 0.466 0.124 1.000 10.1 11.8 17 482 496
(0.025) (0.018) (0.008) (0.001) (0.039) (0.043) (0.051) (0.033)

MN2 1 3 0.823 0.235 2.6+E5 555.1 23 1937 1939
(0.007)

2 30 0.625 0.915 0.316 0.684 0.906 73.0 58.9 21 1441 1447
(0.011) (0.004) (0.028) (0.028)

3 123 0.566 0.827 0.956 0.208 0.402 0.390 1.000 18.8 19.1 19 1401 1411
(0.013) (0.007) (0.004) (0.024) (0.029) (0.029)

4 490 0.563 0.817 0.927 0.969 0.203 0.351 0.239 0.208 1.000 18.6 19.0 17 1401 1415
(0.013) (0.008) (0.007) (0.005) (0.024) (0.029) (0.025) (0.024)

FN2 1 3 0.742 0.275 1053 166.7 23 681 683
(0.013)

2 30 0.624 0.906 0.581 0.419 0.917 17.5 15.2 21 529 535
(0.013) (0.009) (0.050) (0.050)

3 161 0.557 0.728 0.923 0.309 0.349 0.342 0.998 8.1 9.4 19 523 533
(0.019) (0.016) (0.009) (0.047) (0.048) (0.048)

4 136 0.557 0.728 0.923 0.923 0.309 0.349 0.281 0.061 0.998 8.1 9.4 17 523 537
(0.019) (0.016) (0.010) (0.022) (0.047) (0.048) (0.046) (0.024)

O1 1 3 0.858 0.268 5.3+E5 670.5 23 2783 2785
(0.005)

2 38 0.713 0.942 0.367 0.633 0.888 152.5 59.5 21 2172 2178
(0.007) (0.003) (0.023) (0.023)

3 175 0.620 0.830 0.964 0.156 0.389 0.455 0.985 14.2 14.3 19 2127 2137
(0.012) (0.006) (0.003) (0.017) (0.023) (0.023)

4 1235 0.531 0.706 0.868 0.970 0.044 0.211 0.361 0.385 0.997 9.2 11.4 17 2124 2138
(0.023) (0.010) (0.005) (0.003) (0.010) (0.019) (0.023) (0.023)

$θ2
$θ3

$θ4
$π1 $π2

$π3 $π4 χ 2 L2 − 2LL$θ1
289

289



Group Comp's Iter's VAF df AIC

N1 1 3 0.759 0.278 5173 726.5 23 3152 3154
(0.006)

2 42 0.634 0.902 0.534 0.467 0.901 87.5 73.1 21 2498 2504
(0.006) (0.004) (0.023) (0.023)

3 285 0.590 0.817 0.963 0.379 0.430 0.191 0.985 18.3 18.5 19 2444 2454
(0.008) (0.006) (0.004) (0.023) (0.023) (0.018)

4 188 0.571 0.758 0.906 1.000 0.303 0.346 0.288 0.063 1.000 9.5 10.2 17 2436 2450
(0.009) (0.007) (0.005) (0.001) (0.022) (0.022) (0.021) (0.011)

O2 1 3 0.868 0.177 6.5+E6 1024 23 2698 2700
(0.005)

2 28 0.575 0.935 0.186 0.814 0.879 147.7 116.1 21 1790 1796
(0.012) (0.003) (0.020) (0.020)

3 82 0.483 0.834 0.966 0.117 0.314 0.569 1.000 12.9 14.9 19 1689 1699
(0.015) (0.007) (0.003) (0.017) (0.024) (0.026)

4 731 0.477 0.807 0.941 0.994 0.113 0.221 0.489 0.177 1.000 8.8 11.0 17 1685 1699
(0.016) (0.009) (0.004) (0.002) (0.016) (0.021) (0.026) (0.020)

N2 1 3 0.802 0.237 4.3+E4 756.5 23 2686 2688
(0.006)

2 29 0.627 0.914 0.389 0.611 0.913 68.7 59.9 21 1990 1996
(0.008) (0.004) (0.025) (0.025)

3 128 0.568 0.806 0.948 0.251 0.354 0.395 1.000 15.4 17.0 19 1947 1957
(0.010) (0.007) (0.004) (0.022) (0.025) (0.025)

4 1111 0.565 0.795 0.937 1.000 0.243 0.324 0.401 0.033 1.000 14.5 16.2 17 1946 1960
(0.011) (0.007) (0.004) (0.001) (0.022) (0.024) (0.025) (0.010)

P1 1 3 0.806 0.248 2.9+E4 1320 23 4919 4921
(0.004)

2 38 0.663 0.929 0.462 0.538 0.885 161.9 123.4 21 3722 3728
(0.005) (0.003) (0.019) (0.019)

3 143 0.586 0.810 0.960 0.252 0.402 0.347 0.992 22.4 21.9 19 3620 3630
(0.008) (0.005) (0.003) (0.016) (0.019) (0.018)

4 241 0.574 0.779 0.931 1.000 0.218 0.348 0.352 0.082 1.000 13.0 13.0 17 3611 3625
(0.008) (0.005) (0.003) (0.001) (0.016) (0.018) (0.018) (0.010)

P2 1 3 0.833 0.194 2.5+E5 1424 23 4052 4054
(0.005)

2 26 0.594 0.925 0.277 0.723 0.899 152.5 132.3 21 2760 2766
(0.008) (0.003) (0.019) (0.019)

3 98 0.525 0.827 0.961 0.185 0.351 0.465 1.000 18.1 19.9 19 2648 2658
(0.010) (0.006) (0.002) (0.017) (0.021) (0.021)

4 556 0.519 0.805 0.940 1.000 0.177 0.276 0.455 0.091 1.000 13.3 15.1 17 2643 2657
(0.010) (0.007) (0.003) (0.005) (0.016) (0.019) (0.021) (0.012)

$θ2
$θ3

$θ4
$π1 $π2

$π3 $π4 χ 2 L2 − 2LL$θ1
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290



Group Comp's Iter's VAF df AIC

C1 1 3 0.817 0.267 2.5+E4 333.2 0.023 1362 1364
(0.008)

2 34 0.671 0.923 0.419 0.581 0.906 49.7 32.1 21 1061 1067
(0.010) (0.005) (0.034) (0.034)

3 197 0.631 0.850 0.969 0.301 0.420 0.279 0.979 14.9 11.9 19 1041 1051
(0.013) (0.008) (0.005) (0.032) (0.034) (0.031)

4 353 0.501 0.676 0.870 0.973 0.046 0.319 0.399 0.243 1.000 8.6 9.5 17 1039 1053
(0.033) (0.012) (0.008) (0.005) (0.015) (0.032) (0.034) (0.030)

C2 1 3 0.840 0.225 1.7+E6 438.2 23 1475 1477
(0.007)

2 28 0.664 0.938 0.358 0.643 0.885 118.6 35.0 21 1072 1078
(0.011) (0.004) (0.033) (0.033)

3 143 0.557 0.782 0.954 0.146 0.325 0.529 0.981 10.6 9.5 19 1046 1056
(0.018) (0.010) (0.004) (0.024) (0.032) (0.034)

4 860 0.507 0.705 0.876 0.965 0.081 0.245 0.278 0.397 0.994 6.6 7.3 17 1044 1058
(0.025) (0.013) (0.009) (0.004) (0.019) (0.029) (0.031) (0.033)

P 1 3 0.818 0.222 1.4+E5 2730 23 9008 9010
(0.003)

2 34 0.639 0.927 0.378 0.622 0.886 306.3 254 21 6532 6538
(0.005) (0.002) (0.014) (0.014)

3 110 0.559 0.813 0.960 0.215 0.380 0.406 0.996 28.2 30.2 19 6308 6318
(0.006) (0.004) (0.002) (0.012) (0.014) (0.014)

4 330 0.549 0.787 0.935 1.000 0.196 0.317 0.400 0.087 1.000 13.6 16.0 17 6294 6308
(0.007) (0.004) (0.002) (0.001) (0.011) (0.013) (0.014) (0.008)

C 1 3 0.829 0.245 4.0+E5 767.6 23 2846 2848
(0.005)

2 31 0.668 0.931 0.390 0.610 0.896 129.1 60.7 21 2139 2145
(0.008) (0.003) (0.024) (0.024)

3 250 0.606 0.824 0.960 0.230 0.365 0.405 0.977 21.6 17.0 19 2096 2106
(0.010) (0.006) (0.003) (0.021) (0.023) (0.024)

4 372 0.498 0.684 0.872 0.969 0.058 0.276 0.350 0.316 1.000 8.4 10.1 17 2089 2103
(0.021) (0.009) (0.006) (0.003) (0.011) (0.022) (0.023) (0.023)

ALL 1 3 0.821 0.227 2.2+E5 3473 23 1.2+E4 1.2+E4
(0.003)

2 33 0.647 0.928 0.381 0.619 0.888 349.2 290.2 21 8677 8683
(0.004) (0.002) (0.012) (0.012)

3 126 0.567 0.812 0.959 0.212 0.377 0.412 0.992 22.5 23.3 19 8410 8420
(0.005) (0.003) (0.002) (0.010) (0.012) (0.012)

4 1076 0.554 0.780 0.933 0.998 0.186 0.314 0.409 0.091 1.000 7.1 8.0 17 8395 8409
(0.006) (0.004) (0.002) (0.001) (0.010) (0.011) (0.012) (0.007)

$θ2
$θ3

$θ4
$π1 $π2

$π3 $π4 χ 2 L2 − 2LL$θ1
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291
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APPENDIX J

Parameter Estimates and Fit Statistics for the Three Component Restricted Models

Group Comp's VAF df

PMO1 3 0.618 0.850 0.971 0.123 0.398 0.479 0.990 10.2 10.8 19
(0.018) (0.007) (0.009) (0.020) (0.030) (0.031)

0.628 0.788 0.934 0.116 0.178 0.706 0.872 46.8 40.3 21
(0.018) (0.012) (0.004) (0.020) (0.024) (0.028)

29.5 2

PFO1 3 0.617 0.773 0.941 0.207 0.436 0.358 0.983 8.7 8.3 19
(0.023) (0.013) (0.008) (0.042) (0.051) (0.050)

0.628 0.769 0.934 0.224 0.393 0.383 0.959 10.1 8.6 21
(0.022) (0.014) (0.009) (0.043) (0.051) (0.050)

0.3 2 *

PMN1 3 0.577 0.805 0.955 0.275 0.458 0.267 0.985 23.2 23.1 19
(0.012) (0.007) (0.005) (0.028) (0.031) (0.028)

0.628 0.808 0.934 0.355 0.307 0.338 0.855 38.9 35.3 21
(0.010) (0.009) (0.005) (0.030) (0.029) (0.029)

12.2 2

PFN1 3 0.564 0.757 0.930 0.513 0.386 0.101 1.000 10.4 11.1 19
(0.015) (0.015) (0.017) (0.052) (0.050) (0.031)

0.628 0.820 0.934 0.723 0.200 0.077 0.804 23.2 18.8 21
(0.012) (0.018) (0.019) (0.046) (0.041) (0.028)

7.7 2

PMO2 3 0.458 0.884 0.975 0.131 0.372 0.497 1.000 23.6 24.9 19
(0.020) (0.008) (0.003) (0.024) (0.034) (0.035)

0.628 0.835 0.934 0.165 0.004 0.830 0.536 256.4 116.3 21
(0.017) (0.081) (0.004) (0.026) (0.005) (0.027)

91.4 2

PFO2 3 0.505 0.797 0.961 0.181 0.353 0.465 0.996 16.8 19.9 19
(0.029) (0.017) (0.007) (0.046) (0.057) (0.060)

0.628 0.791 0.934 0.297 0.121 0.583 0.729 51.5 34.6 21
(0.022) (0.029) (0.008) (0.055) (0.039) (0.059)

14.7 2

PMN2 3 0.557 0.835 0.958 0.198 0.445 0.357 1.000 21.0 20.7 19
(0.016) (0.008) (0.005) (0.028) (0.035) (0.034)

0.628 0.831 0.934 0.251 0.272 0.478 0.808 50.5 38.0 21
(0.014) (0.010) (0.005) (0.031) (0.031) (0.035)

17.3 2

PFN2 3 0.587 0.769 0.926 0.354 0.303 0.343 1.000 8.0 9.0 19
(0.020) (0.019) (0.011) (0.057) (0.055) (0.057)

0.628 0.821 0.934 0.470 0.237 0.293 0.919 9.9 10.4 21
(0.017) (0.019) (0.011) (0.060) (0.051) (0.054)

1.4 2 *

$θ2
$θ3 $π1 $π2 $π3 χ 2 L2$θ1
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Group Comp's VAF df

CMO1 3 0.338 0.775 0.956 0.013 0.426 0.560 0.955 15.5 15.0 19
(0.096) (0.015) (0.006) (0.013) (0.057) (0.057)

0.628 0.765 0.934 0.067 0.274 0.659 0.835 95.3 22.9 21
(0.044) (0.019) (0.007) (0.029) (0.051) (0.055)

7.9 2

CFO1 3 0.523 0.770 0.930 0.090 0.401 0.509 0.990 6.1 7.3 19
(0.064) (0.026) (0.014) (0.054) (0.093) (0.094)

0.628 0.799 0.934 0.178 0.351 0.472 0.874 8.6 8.3 21
(0.044) (0.026) (0.014) (0.072) (0.090) (0.094)

1.0 2 *

CMN1 3 0.634 0.870 0.982 0.355 0.466 0.179 0.980 6.0 7.5 19
(0.019) (0.012) (0.007) (0.055) (0.058) (0.044)

0.628 0.810 0.934 0.319 0.255 0.427 0.943 9.3 10.5 21
(0.020) (0.018) (0.009) (0.054) (0.050) (0.057)

3.0 2 *

CFN1 3 0.608 0.792 1.000 0.566 0.400 0.034 0.980 8.9 9.6 19
(0.025) (0.025) (0.000) (0.094) (0.093) (0.034)

0.628 0.810 0.934 0.644 0.313 0.043 0.893 11.2 12.0 21
(0.023) (0.027) (0.046) (0.091) (0.088) (0.038)

2.4 2 *

CMO2 3 0.482 0.804 0.966 0.014 0.337 0.649 1.000 10.1 10.5 19
(0.097) (0.016) (0.005) (0.013) (0.053) (0.053)

0.628 0.777 0.934 0.024 0.217 0.760 0.844 33.6 27.8 21
(0.072) (0.020) (0.007) (0.017) (0.046) (0.048)

17.3 2

CFO2 3 0.615 0.886 0.974 0.210 0.635 0.154 1.000 6.1 7.1 19
(0.042) (0.016) (0.016) (0.078) (0.093) (0.070)

0.628 0.873 0.934 0.217 0.396 0.387 0.951 6.9 7.6 21
(0.041) (0.021) (0.016) (0.079) (0.094) (0.094)

0.5 2 *

CMN2 3 0.514 0.721 0.939 0.105 0.332 0.563 0.967 13.0 11.1 19
(0.035) (0.018) (0.007) (0.034) (0.053) (0.055)

0.628 0.789 0.934 0.291 0.152 0.558 0.862 70.4 14.1 21
(0.020) (0.024) (0.008) (0.051) (0.040) (0.056)

3.0 2 *

CFN2 3 0.471 0.669 0.926 0.204 0.523 0.274 0.986 4.6 5.0 19
(0.043) (0.026) (0.020) (0.077) (0.096) (0.086)

0.628 0.895 0.934 0.710 0.083 0.207 0.772 26.0 9.4 21
(0.023) (0.042) (0.021) (0.087) (0.053) (0.078)

4.4 2 *

$θ2
$θ3 $π1 $π2 $π3 χ 2 L2$θ1
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